Summary of 6.7 ### Theorems ## Lemma 1: Weak Duality If **x** is any feasible point for the primal, and **y** is any feasible point for the dual, then $z \leq w$. This line is important for the proof, and also gives some insight into what's going on: $$\mathbf{x}^T \mathbf{c} \le \mathbf{y}^T A \mathbf{x} \le \mathbf{y}^T \mathbf{b}$$ ### Lemma 2: Strong Duality Let x, y be any feasible points to the primal and dual, respectively, so that $$\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$$ Then, the solutions are optimal for their respective LPs. #### Theorem: The Dual Theorem Let \mathcal{B} be an optimal basis for the primal. Then $$\mathbf{y} = (\mathbf{c}_{\mathcal{B}}^T B^{-1})^T$$ is an optimal solution to the dual. Furthermore, the optimal values of the primal and dual are equal (z = w). ## How to Compute the Dual From Optimal Row 0 • Row 0 in the optimal tableau (of a max problem) is given by $$-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A$$ - We talked about what the optimal Row 0 coefficients are in each of the following cases. - For a slack variable, s_i , the Row 0 coefficient is $\mathbf{c}_B^T(B^{-1})_i = y_1$. - For an excess variable, e_i , the Row 0 coefficient is $-\mathbf{c}_B^T(B^{-1})_i = -y_i$. - For an artificial variable a_i , the Row 0 coefficient (using big M) is $\mathbf{c}_B^T(B^{-1})_i + M = y_i M$ ## Example Consider the following LP and its dual: $$\begin{array}{lll} \max & -2x_1 - x_2 + x_3 & \min w = & 3y_1 + 2y_2 + y_3 \\ \text{s.t.} & x_1 + x_2 + x_3 \le 3 & \text{s.t.} & y_1 + y_3 \ge -2 \\ & x_2 + x_3 \ge 2 & y_1 + y_2 \ge -1 \\ & x_1 + x_3 = 1 & y_1 + y_2 + y_3 \ge 1 \\ & \mathbf{x} \ge 0 & y_1 \ge 0, \ y_2 \le 0, \ y_3 \ \text{URS} \end{array}$$ Here is the optimal tableau. You may assume that s_1 is the slack variable for constraint 1, e_1, a_1 are the excess and artificial variables for constraint 2, and a_2 is the artificial variable for constraint 3. Find the solution to the dual: | x_1 | x_2 | x_3 | s_1 | e_1 | a_1 | a_2 | rhs | |-------|-------|-------|-------|-------|--------|-------|-----| | 4 | 0 | 0 | 0 | 1 | -1 + M | 2+M | 0 | | 1 | 0 | 0 | 1 | 1 | -1 | 0 | 1 | | -1 | 1 | 0 | 0 | -1 | 1 | | | | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | SOLUTION: If s_1 is the first slack variable, it started with column [1, 0, 0]. Therefore, we can use the optimal Row 0 value for y_1 . In this case, $y_1 = 0$. For y_2 , we can use either e_1 (the excess variable for the second constraint), or a_1 (the artificial variable for the second constraint: - Using e_1 , the value of $y_2 = -1$ (multiply the Row 0 value by -1). - Using a_1 , the value of $y_2 = (-1 + M) M = -1$ (subtract M from the optimal Row 0 value). For y_3 , we must use a_2 , and so we subtract M from it to get $y_3 = 2$. In summary, the solution to the dual is (in vector form) [0, -1, 2], and the excess variables will be given by [4, 0, 0] (the numbers in Row 0 corresponding to the original variables). ## A Note About Excess Variables If the original problem is given by $\max \mathbf{c}^T \mathbf{x}$ such that $A\mathbf{x} \leq \mathbf{b}$, then we will introduce slack variables so that the tableau becomes: Going to the optimal tableau, we get: where $$\mathbf{y}^T = \mathbf{c}_B^T B^{-1}$$ as proven in the Dual Theorem. Now, suppose we define the vector \vec{E} as the vector of n excess variables for the dual- $\vec{E} = [e_1, e_2, \dots, e_n]^T$. Then, in the dual we have the following (substitute in the value for \mathbf{y}): $$A^T \mathbf{y} = \mathbf{c} + \vec{E} \quad \Rightarrow \quad \vec{E}^T = -\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A$$