HW Set 10

These were 7.5.4, 7.6.3, 7.6.4, 8.2.2, 8.2.7

7.5.4 We're told that we have three people for 4 jobs. Persons 2 and 3 may each take 2 jobs—To schedule this, we will have workers 1, 2, 2', 3, 3', where 2',3' are the second jobs. But this gives us 5 "people", so we need 5 jobs—We'll add a dummy job with zero cost:

	1	2	3	4	dummy
1	50	46	42	40	0
2	51	48	44	M	0
2'	51	48	44	M	0
3	M	47	45	45	0
3'	M	47	45	45	0 0 0 0

We should find that: Person 1 is assigned to 4, Person 2 is assigned to 1, 3 and Person 3 is assigned to job 2, for a total cost of \$182.

7.6.3-4 The first tableau isn't a big change from 7.6.2- We're just crossing out some possibilities.

	Mob	Gal	NY	LA	Dum	
W 1	22	23	M	M	0	150
W 2	27	22	M	M	0	200
Mob	0	6	16	17	0	350
Gal	6	0	14	16	0	350
NY	M	M	0	15	0	350
LA	M	M	15	0	0	350
	350	350	490	510	50	

The idea is that Mobile and Galveston now are maxed out at 180, 150 respectively.

	Mob	Gal	NY	LA	Dum	
W 1	22	23	M	M	0	150
W 2	27	22	M	M	0	200
Mob	0	6	16	17	0	180
Gal	6	0	14	16	0	150
NY	M	M	0	15	0	s
LA	M	M	15	0	0	s
	180	150	140 + s	160 + s	50	

where s = 330.

8.2.2 For the Dijkstra algorithm, we have:

This tells us that the shortest length to node 5 is 14 units, and we get that by taking either $1 \rightarrow 2 \rightarrow 5$.

8.2.7 The chart of costs would be the following where (i, j) represents C_{ij} :

This leads to the Dijkstra algorithm, we have:

	1	2	3	4	5	6
1	0_1	208_{1}	258_{1}	355_{1}	537_{1}	8411
2		208_{1}	258_{1}	355_{1}	537_{1}	765_{2}
4			258_{1}	355_{1}	537_{1}	653_{3}
3				355_{1}	537_{1}	653_{3}
5					537_{1}	653_{3}
6						653_{3}

This tells us that the shortest length to node 6 is 653 units, and we get that by taking either $1 \rightarrow 3 \rightarrow 6$.

That is, we buy a car at the beginning, then trade it in after two years, and at the beginning of year 3, buy a new car.

2