x_1	<i>x</i> ₂ -5	<i>s</i> ₁	s ₂	s ₃	rhs
-3	-5	0	0	0	0
1	0		0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

Write the dual:

Write the dual:

x_1	<i>x</i> ₂ -5	s_1	s ₂	s ₃	rhs
-3	-5	0	0	0	0
1	0		•	0	4
0	2	0	1	0	12
3	2	0	0	1	18

The current basis is:

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, \mathbf{c}_B^T

The current basis is: $\mathcal{B} = \{s_1, s_2, s_3\}$ Given that, $\mathbf{c}_B^T = [0, 0, 0]$ so that the dual: $\mathbf{y}^T =$

```
The current basis is: \mathcal{B} = \{s_1, s_2, s_3\}
Given that, \mathbf{c}_B^T = [0, 0, 0]
so that the dual: \mathbf{y}^T = \mathbf{c}_B^T B^{-1} = [0, 0, 0]
And the excess variables: -e_1 = 3 - y_1 - 3y_3
```

```
The current basis is: \mathcal{B} = \{s_1, s_2, s_3\}
Given that, \mathbf{c}_B^T = [0, 0, 0]
so that the dual: \mathbf{y}^T = \mathbf{c}_B^T B^{-1} = [0, 0, 0]
And the excess variables: -e_1 = 3 - y_1 - 3y_3 = 3, or e_1 = -3
Similarly, -e_2 = 5 - y_2 - 2y_3
```

```
The current basis is: \mathcal{B} = \{s_1, s_2, s_3\}
Given that, \mathbf{c}_B^T = [0, 0, 0]
so that the dual: \mathbf{y}^T = \mathbf{c}_B^T B^{-1} = [0, 0, 0]
And the excess variables: -e_1 = 3 - y_1 - 3y_3 = 3, or e_1 = -3
Similarly, -e_2 = 5 - y_2 - 2y_3, or e_2 = -5.
```

This means that we have the following

$$\begin{array}{c|ccccc} e_1 & e_2 & y_1 & y_2 & y_3 \\ \hline -3 & -5 & 0 & 0 & 0 \end{array}$$

This means that we have the following

The solution to the dual is FEASIBLE, the solution to the PRIMAL is INFEASIBLE.

This means that we have the following

$$\begin{array}{c|ccccc} e_1 & e_2 & y_1 & y_2 & y_3 \\ \hline -3 & -5 & 0 & 0 & 0 \end{array}$$

The solution to the dual is FEASIBLE, the solution to the PRIMAL is INFEASIBLE.

Note where the zeros appear in each solution...

Solve the primal and the dual:

$$x_1$$
 x_2 s_1 s_2 s_3

Solve the primal and the dual:

Solve the primal and the dual:

$$e_1$$
 e_2 y_1 y_2 y_3

Solve the primal and the dual:

Feasibility?

Solve the primal and the dual:

Feasibility?

The primal \mathbf{x} is not feasible, the dual \mathbf{y} is not feasible.

New basis: $\mathcal{B} = \{x_1, x_2, s_3\}.$

$$x_1$$
 x_2 x_2 x_3 x_4 x_5 x_5

The solutions to primal and dual are:

$$\begin{array}{c|ccccc} e_1 & e_2 & y_1 & y_2 & y_3 \\ \hline 0 & 0 & 3 & 5/2 & 0 \\ \end{array}$$

Feasibility?

New basis: $\mathcal{B} = \{x_1, x_2, s_3\}.$

The solutions to primal and dual are:

Feasibility?

This is dual feasible, but primal infeasible.

Final basis: $\mathcal{B} = \{x_1, x_2, s_1\}$

Solutions to the primal, dual are:

$$\begin{array}{c|ccccc} e_1 & e_2 & y_1 & y_2 & y_3 \\ \hline 0 & 0 & 0 & 3/2 & 1 \\ \end{array}$$

Feasibility?

Final basis: $\mathcal{B} = \{x_1, x_2, s_1\}$

Solutions to the primal, dual are:

$$\begin{array}{c|ccccc} e_1 & e_2 & y_1 & y_2 & y_3 \\ \hline 0 & 0 & 0 & 3/2 & 1 \\ \end{array}$$

Feasibility?

Both the primal and dual are feasible (so optimal).

