
Goal Programming Example

Recall the football/soap opera problem.
We want to solve the linear program, given the following
goals, and given the budget constraint:

I Goal 1: Get at least 40 HIM.

I Goal 2: Get at least 60 LIP.

I Goal 3: Get at least 35 HIW.



This translates to 3 “Row 0’s”

min z = P1s1
min z = P2s2
min z = P3s3

with constraints:

7x1 + 3x2 + s1 − e1 = 40 HIM
10x1 + 5x2 + s2 − e2 = 60 LIP

5x1 + 4x2 + s3 − e3 = 35 HIW
100x1 + 60x2 ≤ 600 Budget



So that the (max) tableau:

x1 x2 e1 e2 e3 s1 s2 s3 s4 rhs
0 0 0 0 0 P1 0 0 0 0
0 0 0 0 0 0 P2 0 0 0
0 0 0 0 0 0 0 P3 0 0
7 3 −1 0 0 1 0 0 0 40

10 5 0 −1 0 0 1 0 0 60
5 4 0 0 −1 0 0 1 0 35

100 60 0 0 0 0 0 0 1 600

We need to “clean up” all the objective function rows so that
we have columns of the identity.



x1 x2 e1 e2 e3 s1 s2 s3 s4 rhs
−7P1 −3P1 P1 0 0 0 0 0 0 −40P1

−10P2 −5P2 0 P2 0 0 0 0 0 −60P2

−5P3 −4P3 0 0 P3 0 0 0 0 −35P3

7 3 −1 0 0 1 0 0 0 40
10 5 0 −1 0 0 1 0 0 60

5 4 0 0 −1 0 0 1 0 35
100 60 0 0 0 0 0 0 1 600

We focus on the Simplex Method using only the first “Row 0”.
First, we pivot in Column 1 (aned first constraint row)
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We focus on the Simplex Method using only the first “Row 0”.
First, we pivot in Column 1 (and first constraint row).

Pivot in Column 3, and after Ratio Test, use the second
constraint (there was a tie between the second and last).
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We focus on the Simplex Method using only the first “Row 0”.
First, we pivot in Column 1 (and first constraint row).
Pivot in Column 3, and after Ratio Test, use the second
constraint (there was a tie between the second and last).
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We will now work with our third goal. Pivot in Column 2, last
row.
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This is the final tableau. We were unable to meet Goal 3
(S3 = 5), but we did meet goals 1 and 2: Use all ad time in
football (6 units), and no time in soaps (0).
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This is the final tableau. We were unable to meet Goal 3
(S3 = 5), but we did meet goals 1 and 2: Use all ad time in
football (6 units), and no time in soaps (0).



(Exercise 4, 4.16). We have two products, and we have 32
hours of labor available, a goal of 48 profit, and some demand.

4x1 +2x2 +s1 −e1 = 32 Labor
x1 +s2 −e2 = 7 Demand 1

x2 +s3 −e3 = 10 Demand 2
4x1 +2x2 +s4 −e4 = 48 Budget goal

I Goal 1: Avoid underutilization of labor.

I Goal 2: Meet demand for product 1.

I Goal 3: Meet demand for product 2.

I Goal 4: Do not use any overtime.



From our equations, we get the tableau (max):

x1 x2 s1 s2 s3 e1 e2 e3 rhs
0 0 P1 0 0 0 0 0 0
0 0 0 P2 0 0 0 0 0
0 0 0 0 P3 0 0 0 0
0 0 0 0 0 P4 0 0 0
4 2 1 0 0 −1 0 0 32
1 0 0 1 0 0 −1 0 7
0 1 0 0 1 0 0 −1 10


In this case, we’ll solve in LINGO.



In LINGO, we’ll minimize s1 first:

min=s1;

4*x1+2*x2+s1-e1=32;

x1+s2-e2=7;

x2+s3-e3=10;

4*x1+2*x2+s4-e4=48;

LINGO returns x1 = 0 and x2 = 16. Now we bring in the
second constraint:
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Set s1 = 0 as a new constraint, and minimize s2:

min=s2;

4*x1+2*x2+s1-e1=32;

x1+s2-e2=7;

x2+s3-e3=10;

4*x1+2*x2+s4-e4=48;
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LINGO returns x1 = 7 and x2 = 2. Now bring in the third
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Set s2 = 0 as a new constraint, and minimize s3:
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LINGO returns x1 = 7 and x2 = 10. At this stage, we won’t be
able to drive e1 to zero, and this is our optimal solution.
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