Recall the football/soap opera problem.

We want to solve the linear program, given the following goals, and given the budget constraint:

- ▶ Goal 1: Get at least 40 HIM.
- Goal 2: Get at least 60 LIP.
- ► Goal 3: Get at least 35 HIW.

This translates to 3 "Row 0's"

$$\begin{array}{ll} \min & z = P_1 s_1 \\ \min & z = & P_2 s_2 \\ \min & z = & P_3 s_3 \end{array}$$

with constraints:

$$7x_1 + 3x_2 + s_1 - e_1 = 40 \quad \text{HIM}
10x_1 + 5x_2 + s_2 - e_2 = 60 \quad \text{LIP}
5x_1 + 4x_2 + s_3 - e_3 = 35 \quad \text{HIW}
100x_1 + 60x_2 \le 600 \quad \text{Budget}$$

So that the (max) tableau:

<i>x</i> ₁	<i>x</i> ₂	e_1	e_2	e_3	<i>s</i> ₁	s ₂	s 3	<i>S</i> 4	rhs
0	0	0	0	0	P_1	0	0	0	0
0	0	0	0	0	0	P_2	0	0	0
0	0	0	0	0	0	0	P_3	0	0
7	3	-1	0	0	1	0	0	0	40
10	5	0	-1	0	0	1	0	0	60
5	4	0	0	-1	0	0	1	0	35
100	60	0	0	0	0	0	0	1	600

We need to "clean up" all the objective function rows so that we have columns of the identity.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

<i>x</i> ₁	<i>x</i> ₂	e_1	e_2	e ₃	<i>s</i> ₁	s ₂	s 3	S 4	rhs
$-7P_{1}$	$-3P_{1}$	P_1	0	0	0	0	0	0	$-40P_{1}$
$-10P_{2}$	$-5P_{2}$	0	P_2	0	0	0	0	0	$-60P_{2}$
$-5P_{3}$	$-4P_{3}$	0	0	P_3	0	0	0	0	$-35P_{3}$
7	3	-1	0	0	1	0	0	0	40
10	5	0	-1	0	0	1	0	0	60
5	4	0	0	-1	0	0	1	0	35
100	60	0	0	0	0	0	0	1	600

We focus on the Simplex Method using only the first "Row 0". First, we pivot in Column 1 (aned first constraint row)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

x_1	<i>x</i> ₂	e_1	e_2	e ₃	s_1	s ₂	S 3	S 4	rhs
0	0	0	0	0	P_1	0	0	0	0
0	$-\frac{5}{7}P_{2}$	$-\frac{10}{7}P_2$	P_2	0	$\frac{10}{7}P_2$	0	0	0	$-\frac{20}{7}P_{2}$
0	$-\frac{13}{7}P_{3}$	$-\frac{5}{7}P_{3}$	0	P_3	$\frac{5}{7}P_{3}$	0	0	0	$-\frac{45}{7}P_{3}$
1	3/7	-1/7	0	0	1/7	0	0	0	40/7
0	5/7	10/7	-1	0	-10/7	1	0	0	20/7
0	13/7	5/7	0	-1	-5/7	0	1	0	45/7
0	$\frac{120}{7}$	$\frac{100}{7}$	0	0	$-\frac{100}{7}$	0	0	1	$\frac{200}{7}$

We focus on the Simplex Method using only the first "Row 0". First, we pivot in Column 1 (and first constraint row).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

x_1	<i>x</i> ₂	e_1	e_2	e ₃	s_1	s ₂	s 3	S 4	rhs
0	0	0	0	0	P_1	0	0	0	0
0	$-\frac{5}{7}P_2$	$-\frac{10}{7}P_2$	P_2	0	$\frac{10}{7}P_2$	0	0	0	$-\frac{20}{7}P_2$
0	$-\frac{13}{7}P_{3}$	$-\frac{5}{7}P_{3}$	0	P_3	$\frac{5}{7}P_{3}$	0	0	0	$-\frac{45}{7}P_{3}$
1	3/7	-1/7	0	0	1/7	0	0	0	40/7
0	5/7	10/7	-1	0	-10/7	1	0	0	20/7
0	13/7	5/7	0	-1	-5/7	0	1	0	45/7
0	$\frac{120}{7}$	$\frac{100}{7}$	0	0	$-\frac{100}{7}$	0	0	1	$\frac{200}{7}$

We focus on the Simplex Method using only the first "Row 0". First, we pivot in Column 1 (and first constraint row). Pivot in Column 3, and after Ratio Test, use the second constraint (there was a tie between the second and last).

We will now work with our third goal. Pivot in Column 2, last row.

(日)、

э

$\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$	<i>x</i> ₂ 0	е ₁ 0	<i>e</i> ₂ 0	е _з 0	s ₁ P1	<i>s</i> ₂ 0	<i>s</i> 3 0	<i>s</i> 4 0	rhs 0
0	0	0	0	0	0	P2	0	0	0
0	0	0	P3	P3	0	-P3	0	$\frac{3}{20} P3$	-5 <i>P3</i>
1	0	0	$-\frac{3}{5}$	0	0	<u>3</u> 5	0	$-\frac{1}{20}$	6
0	0	1	$-\frac{6}{5}$	0	-1	<u>6</u> 5	0	$-\frac{1}{20}$	2
0	0	0	-1	-1	0	1	1	$-\frac{3}{20}$	5
0	1	0	1	0	0	-1	0	$\frac{1}{10}$	0

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$	<i>x</i> ₂ 0	<i>e</i> 1 0	<i>e</i> ₂ 0	е ₃ 0	s ₁ P1	<i>s</i> ₂ 0	<i>s</i> 3 0	<i>s</i> 4 0	rhs 0
0	0	0	0	0	0	P2	0	0	0
0	0	0	P3	P3	0	-P3	0	$\frac{3}{20} P3$	-5 <i>P3</i>
1	0	0	$-\frac{3}{5}$	0	0	<u>3</u> 5	0	$-\frac{1}{20}$	6
0	0	1	$-\frac{6}{5}$	0	-1	$\frac{6}{5}$	0	$-\frac{1}{20}$	2
0	0	0	-1	-1	0	1	1	$-\frac{3}{20}$	5
0	1	0	1	0	0	-1	0	$\frac{1}{10}$	0

This is the final tableau. We were unable to meet Goal 3 $(S_3 = 5)$, but we did meet goals 1 and 2: Use all ad time in football (6 units), and no time in soaps (0).

(Exercise 4, 4.16). We have two products, and we have 32 hours of labor available, a goal of 48 profit, and some demand.

$4x_1$	$+2x_{2}$	$+s_1$	$-e_1$	= 32 Labor
x_1		$+s_2$	$-e_2$	= 7 Demand 1
	<i>x</i> ₂	$+s_3$	$-e_3$	= 10 Demand 2
4 <i>x</i> ₁	$+2x_{2}$	$+s_4$	$-e_4$	= 48 Budget goal

- ► Goal 1: Avoid underutilization of labor.
- ► Goal 2: Meet demand for product 1.
- ► Goal 3: Meet demand for product 2.
- ► Goal 4: Do not use any overtime.

From our equations, we get the tableau (max):

Γ	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	e_1	e_2	e_3	rhs
	0	0	P_1	0	0	0	0	0	0
	0	0	0	P_2	0	0	0	0	0
	0	0	0	0	P_3	0	0	0	0
	0	0	0	0	0	P_4	0	0	0
	4	2	1	0	0	-1	0	0	32
	1	0	0	1	0	0	-1	0	7
L	0	1	0	0	1	0	0	-1	10

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this case, we'll solve in LINGO.

In LINGO, we'll minimize s_1 first:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
min=s1;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
```

In LINGO, we'll minimize s₁ first:

```
min=s1;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
```

LINGO returns $x_1 = 0$ and $x_2 = 16$. Now we bring in the second constraint:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Set $s_1 = 0$ as a new constraint, and minimize s_2 :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
min=s2;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
s1=0;
```

Set $s_1 = 0$ as a new constraint, and minimize s_2 :

```
min=s2;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
s1=0;
```

LINGO returns $x_1 = 7$ and $x_2 = 2$. Now bring in the third constraint:

▲□▶
▲□▶
■▶
■▶
■▶

Set $s_2 = 0$ as a new constraint, and minimize s_3 :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
min=s3;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
s1=0;
s2=0;
```

Set $s_2 = 0$ as a new constraint, and minimize s_3 :

```
min=s3;
4*x1+2*x2+s1-e1=32;
x1+s2-e2=7;
x2+s3-e3=10;
4*x1+2*x2+s4-e4=48;
s1=0;
s2=0;
```

LINGO returns $x_1 = 7$ and $x_2 = 10$. At this stage, we won't be able to drive e_1 to zero, and this is our optimal solution.