Sensitivity Analysis

In this case, we'll switch to the transportation problem in the text. The optimal tableau was found to be:

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply		
		8	10		25			9	35		
$u_{1}=0$											
$u_{2}=3$	${ }_{45}{ }^{\text {a }}$			12			${ }_{5}$			7	50
		14	10 ${ }_{10}$			16	$3{ }_{30}$				
$u_{3}=3$									40		
Demand	45		20		30		30		125		

There are several changes we'll look at:

- Change the cost, $c_{i j}$ for a NBV.
- Change the cost for a basic variable.
- Change supply s_{i} and demand d_{j} by Δ (must do both to stay balanced).

Computations for Sensitivity Analysis

We'll use the book's problem as our example. Here we go with some details.

1. Change a cost $c_{i j}$ for a NBV.

In this situation, the change is completely localized to the (i, j) cell. To keep the current basis optimal, we only need:

$$
\left(c_{i j}+\Delta\right)-\left(u_{i}+v_{j}\right)=\left(c_{i j}-\left(u_{i}+v_{j}\right)\right)+\Delta>0
$$

For example, changing the c_{11} cost from 8 to $8+\Delta$ results in:

$$
(8-(6+0))+\Delta>0 \quad \Rightarrow \quad \Delta>-2
$$

As an extra example, suppose we change by $\Delta=-3$. Compute the new basic solution. SOLUTION: Changing the cost to 5 will make the "Row 0" value negative, meaning we now want to pivot into x_{11}. Doing that we get the loop:

$$
\begin{array}{r|r|r}
\theta & (10) & 25-\theta \\
\hline 45-\theta & & 5+\theta
\end{array} \Rightarrow \begin{array}{r|r|r}
25 & 10 & \\
\hline 20 & & 30
\end{array}
$$

Recalculating "Row 0" values:

	$v_{1}=5$		$v_{2}=6$		$v_{3}=9$		$v_{4}=2$		Supply
		5		6		10		9	35
$u_{1}=0$	25		10		+		+		
		9		12		13		7	
$u_{2}=4$	20		$+$		30		$+$		50
		14		9		16		5	
$u_{3}=3$	+		10		+		30		40
Demand	45		20		30		30		125

And we see that the current tableau is again optimal.
2. Changing the cost of a BV.

In this situation, adding Δ will have more of an effect, since these costs are used in calculating the u, v.
For example, let's change c_{13} from 10 to $10+\Delta$ and track what happens:

	$v_{1}=6+\Delta$	$v_{2}=6$	$v_{3}=10+\Delta$	$v_{4}=2$	Supply
$u_{1}=0$	$\underset{(2-\Delta)}{\boxed{8}}$	10	${ }_{25}$		35
$u_{2}=3-\Delta$	45	$\underset{(3+\Delta)}{ }$	${ }_{5}$	$\begin{array}{r} 7 \\ (2+\Delta) \end{array}$	50
$u_{3}=3$	$\begin{array}{r\|r} (5-\Delta) & 14 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & 10 \end{aligned}$	$\begin{array}{r\|r} & 16 \\ (3-\Delta) \end{array}$	$\begin{array}{l\|l} \hline & 5 \\ 30 \end{array}$	40
Demand	45	20	30	30	125

We have 5 inequalities to check:

$$
2-\Delta>0, \quad 5-\Delta>0, \quad 3+\Delta>0, \quad 3-\Delta>0, \quad 2+\Delta>0
$$

All are satisfied (do them on a number line) for $-2<\Delta<2$.
3. Change s_{i}, d_{j} when $x_{i j}$ is basic:

This means that the solution is simply increased by the common amount. For example, if s_{1}, d_{2} were increased by 2 , then we increase x_{12} from 10 to 12 . This increases the cost by $2 \times c_{12}=2 \times 6=12$.
4. Change s_{i}, d_{j} when $x_{i j}$ is non-basic: In this case, we need to "absorb" the change in the loop that is created by temporarily increasing $x_{i j}$ from 0 .
For example, suppose supply 1 , demand 4 is increased to Δ. What is the corresponding change to the basic variables?

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply
		8	$10 \begin{aligned} & 6 \\ & \end{aligned}$		25 		$\Delta \square 9$		$35+\Delta$
$u_{1}=0$									
$u_{2}=3$	${ }_{45}{ }^{9}$			12	${ }_{5}{ }^{13}$			7	50
		14	$10 \begin{aligned} & \text { 9 } \\ & \\ & \\ & \end{aligned}$			16	$3 \begin{aligned} & \text { 5 } \\ & \\ & \\ & \end{aligned}$		40
$u_{3}=3$									
Demand	45		20		30		$30+\Delta$		125

This creates the loop:

$10+\Delta$	(25)	$\Delta-\Delta$
$10-\Delta$		$30+\Delta$

And because the costs and shadow prices did not change, we are still optimal:

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply		
		8	$\underset{10+\Delta}{ }$		25			9	$35+\Delta$		
$u_{1}=0$											
$u_{2}=3$	$4{ }_{45}$			12			${ }_{5} 13$		7		50
		14	$10-\Delta{ }^{\text {9 }}$			16	$30+\Delta$				
$u_{3}=3$									40		
Demand	45		20		30		$30+\Delta$		125		

With the change in $z=z_{\text {old }}+6 \Delta+5 \Delta-9 \Delta=z_{\text {old }}+2 \Delta$

