Sensitivity Analysis

In this case, we'll switch to the transportation problem in the text. The optimal tableau was found to be:

	$v_1 = 6$	$v_2 = 6$	$v_3 = 10$	$v_4 = 2$	Supply
	8	6	10	9	
$u_1 = 0$		10	25		35
	9	12	13	7	
$u_2 = 3$	45		5		50
	14	9	16	5	
$u_3 = 3$		10		30	40
Demand	45	20	30	30	125

There are several changes we'll look at:

- Change the cost, c_{ij} for a NBV.
- Change the cost for a basic variable.
- Change supply s_i and demand d_j by Δ (must do both to stay balanced).

Computations for Sensitivity Analysis

We'll use the book's problem as our example. Here we go with some details.

1. Change a cost c_{ij} for a NBV.

In this situation, the change is completely localized to the (i, j) cell. To keep the current basis optimal, we only need:

$$(c_{ij} + \Delta) - (u_i + v_j) = (c_{ij} - (u_i + v_j)) + \Delta > 0$$

For example, changing the c_{11} cost from 8 to $8 + \Delta$ results in:

$$(8 - (6 + 0)) + \Delta > 0 \quad \Rightarrow \quad \Delta > -2$$

As an extra example, suppose we change by $\Delta = -3$. Compute the new basic solution. SOLUTION: Changing the cost to 5 will make the "Row 0" value negative, meaning we now want to pivot into x_{11} . Doing that we get the loop:

Recalculating	g "Row	0" values:
---------------	--------	------------

	$v_1 = 5$	$v_2 = 6$	$v_3 = 9$	$v_4 = 2$	Supply
	5	6	10	9	
$u_1 = 0$	25	10	+	+	35
	9	12	13	7	
$u_2 = 4$	20	+	30	+	50
	14	9	16	5	
$u_3 = 3$	+	10	+	30	40
Demand	45	20	30	30	125

And we see that the current tableau is again optimal.

2. Changing the cost of a BV.

In this situation, adding Δ will have more of an effect, since these costs are used in calculating the u, v.

For example, let's change c_{13} from 10 to $10 + \Delta$ and track what happens:

	$v_1 = 6 + \Delta$	$v_2 = 6$	$v_3 = 10 + \Delta$	$v_4 = 2$	Supply
	8	6	$10 + \Delta$	9	
$u_1 = 0$	$(2-\Delta)$	10	25	(7)	35
	9	12	13	7	
$u_2 = 3 - \Delta$	45	$(3 + \Delta)$	5	$(2 + \Delta)$	50
	14	9	16	5	
$u_3 = 3$	$(5-\Delta)$	10	$(3-\overline{\Delta})$	30	40
Demand	45	20	30	30	125

We have 5 inequalities to check:

 $2-\Delta>0, \quad 5-\Delta>0, \quad 3+\Delta>0, \quad 3-\Delta>0, \quad 2+\Delta>0$

All are satisfied (do them on a number line) for $-2 < \Delta < 2$.

3. Change s_i , d_j when x_{ij} is basic:

This means that the solution is simply increased by the common amount. For example, if s_1, d_2 were increased by 2, then we increase x_{12} from 10 to 12. This increases the cost by $2 \times c_{12} = 2 \times 6 = 12$.

4. Change s_i, d_j when x_{ij} is non-basic: In this case, we need to "absorb" the change in the loop that is created by temporarily increasing x_{ij} from 0.

For example, suppose supply 1, demand 4 is increased to Δ . What is the corresponding change to the basic variables?

	1								
	$v_1 = 6$		$v_2 = 6$		$v_3 = 10$		$v_4 = 2$		Supply
		8		6		10		9	
$u_1 = 0$			10		25		Δ		$35 + \Delta$
		9		12		13		7	
$u_2 = 3$	45				5				50
		14		9		16		5	
$u_3 = 3$			10				30		40
Demand	45		20		30		$30+\Delta$		125

This creates the loop:

$10 + \Delta$	(25)	$\Delta - \Delta$
$10 - \Delta$		$30 + \Delta$

And because the costs and shadow prices did not change, we are still optimal:

	$v_1 = 6$		$v_2 = 6$		$v_3 = 10$		$v_4 = 2$		Supply
		8		6		10		9	
$u_1 = 0$			$10+\Delta$		25				$35 + \Delta$
		9		12		13		7	
$u_2 = 3$	45				5				50
		14		9		16		5	
$u_3 = 3$			$ 10-\Delta$				30 + 2	7	40
Demand	45		20		30		$30+\Delta$		125

With the change in $z=z_{\rm old}+6\Delta+5\Delta-9\Delta=z_{\rm old}+2\Delta$