
Section 7.5: The Assignment Problem

In this section, we investigate the assignment problem- That is, given n jobs and n people, assign
every job to a unique person. Typically, there are either costs or time involved, and we would want
to make the assignments in such a way as to minimize this quantity.

Let’s be more specific with the example from the text: MachineCo has 4 different machines,
and each machine can do one of four jobs. We know the time involved for each machine and each
job. Make assignments to minimize the total time involved.

Since we’re minimizing time, can we frame this as a linear program? In fact we can, but it is
probably easier to think of it as a tranportation problem (and through that, formulate the LP). For
this to be put into a transportation problem, we want to think about each machine as a “supply”
and each job as a “demand”:

• Each machine as having a supply of 1.

• Each job has a demand of 1.

• Each machine, job pair has a cost.

This gives us the transportation tableau:
J1 J2 J3 J4

M1

14 5 8 7

1

M2

2 12 6 5

1

M3

7 8 3 9

1

M4

2 4 6 10

1

Demand 1 1 1 1 4

From this, we could solve it as a transportation problem or as a linear program. However,
we can also take advantage of the form of the problem and put together an algorithm that takes
advantage of it- this is the Hungarian Algorithm.

The Hungarian Algorithm

The Hungarian Algorithm is an algorithm designed to solve the assignment problem. We’ll sum-
marize it, but let’s try the MachineCo problem as an example of how this algorithm will work.

First, we build a table with just our costs (or in this case, our times):

1



J1 J2 J3 J4 min

M1 14 5 8 7

M2 2 12 6 5

M3 7 8 3 9

M4 2 4 6 10

Looking at this table, it is clear that no matter what job
is assigned to machine 1, it will take at least 5 minutes.
Similarly, in row 2, machine 2 takes at least 2 minutes.
And to finish this off, machine 3 will take at least 3 minutes
and machine 4, two minutes. We will take these minimum
times out of each row (subtracting), and we’ll end up with
the following table. The sum of the times is given as 12
minutes- the minimum so far.

J1 J2 J3 J4 min

M1 9 0 3 2 5

M2 0 10 4 3 2

M3 4 5 0 6 3

M4 0 2 4 8 2

12

But wait- Looking down each row, it looks like no matter
which machine job 4 is assigned to, it will take an additional
2 minutes. Therefore, the minimum of each column is writ-
ten down at the bottom, and the columns are subtracted
(in this case, only column 4). We add the two to 12 and
get 14. The interpretation of this is that, no matter how
the assignments are made, it will take at least 14 minutes
as the minimum.

J1 J2 J3 J4 min

M1 9 0 3 0 5

M2 0 10 4 1 2

M3 4 5 0 4 3

M4 0 2 4 6 2

0 0 0 2 14

We would attain our minimum if we were able to make ”0”
assignments for each machine and job pair, but there aren’t
enough zeros yet.
We will now try to draw the minimum number of lines (hor-
izontal or vertical only) we need to cover all the zeros cur-
rently showing. In this case, it takes three lines.

J1 J2 J3 J4 min

M1 9 0 3 0 5

M2 0 10 4 1 2

M3 4 5 0 4 3

M4 0 2 4 6 2

0 0 0 2 14

From the cells that remain uncovered, the minimum extra
time that will be taken is 1 unit. Therefore, we’ll subtract
that from rows 2, 3, 4 (add to the right-most column).

J1 J2 J3 J4 min

M1 9 0 3 0 5

M2 −1 9 3 0 3

M3 3 4 −1 3 4

M4 −1 1 3 5 3

0 0 0 2 17

2



Unfortunately, subtracting one gave us some negative time
cells. Add 1 back into columns 1 and 4 (bringing the −1
down to the bottom as our “minimum”). Notice this also
takes our minimum time to 15.

J1 J2 J3 J4 min

M1 10 0 4 0 5

M2 0 9 4 0 3

M3 4 4 0 3 4

M4 0 1 4 5 3

−1 0 −1 2 15

What we would like to do now, is to consider what the end result was in moving from our initial
table to our final table after adding and subtracting that minimum value:

J1 J2 J3 J4 min

M1 9 0 3 0 5

M2 0 10 4 1 2

M3 4 5 0 4 3

M4 0 2 4 6 2

0 0 0 2 14

⇒

J1 J2 J3 J4 min

M1 10 0 4 0 5

M2 0 9 4 0 3

M3 4 4 0 3 4

M4 0 1 4 5 3

−1 0 −1 2 15

Do you see that pattern? We subtract one from all cells not covered, add one to each cell
containing an intersection, and leave the other cells.

J1 J2 J3 J4 min

M1 +1 0 +1 0

M2 0 −1 0 −1

M3 0 −1 0 −1

M4 0 −1 0 −1

Now consider the array that remains. We are now able to assign zeros to a machine, job pairing,
which means we’ll attain the minimum cost.

J1 J2 J3 J4 min

M1 10 0 4 0 5

M2 0 9 4 0 3

M3 4 4 0 3 4

M4 0 1 4 5 3

−1 0 −1 2 15

As an example pairing, consider: (M1, J2), (M2, J4), (M3, J3), and (M4, J1). Then the time is
going to be 5 + 5 + 3 + 2 = 15, which is our minimum.

3



A Second Example

Let’s look at a big longer example. See if you can do each step before looking at the answers.
Suppose we want to assign 4 chores to 4 people. The times for each person are given below.

We want to assign one person per job in such a way as to minimize the time it takes. (Think of
the jobs as either occurring one after another, or in terms of paying each person for each job).

J1 J2 J3 J4

P1 20 22 14 24

P2 20 19 12 20

P3 13 10 18 16

P4 22 23 9 28

→

J1 J2 J3 J4 min

P1 6 8 0 10 14

P2 8 7 0 8 12

P3 3 0 8 6 10

P4 13 14 0 19 9

45

→

J1 J2 J3 J4 min

P1 3 8 0 4 14

P2 5 7 0 2 12

P3 0 0 8 0 10

P4 10 14 0 13 9

3 0 0 6 54

Now we see it takes at least 54 minutes no matter who is
assigned to what. We would attain that minimum if we can
assign a “0” to each person, job pairing. Unfortunately,
there’s no way that we can do that (yet). Use the minimum
number of lines to cover all the zeros. In this case, it only
takes two.

3 8 0 4

5 7 0 2

0 0 8 0

10 14 0 13

The minimum amount of the uncovered squares is 2. The operation we perform is given
below:

3 8 0 4

5 7 0 2

0 0 8 0

10 14 0 13

+

−2 −2 −2

−2 −2 −2

+2

−2 −2 −2

=

1 6 0 2

3 5 0 0

0 0 10 0

8 12 0 11

I should mention that when you do these in practice, we don’t typically keep track of the
“current minimum”- We can just compute the minimum at the end. Sometimes it is beneficial to
track it if we want to track the solution to the dual (these minimum values perhaps?).

Now we repeat- What is the minimum number of (horizontal
or vertical) lines required to cover all the zeros? If less than
4, we have to continue. In this case, we have three lines. The
remaining minimum value is 1.

1 6 0 2

3 5 0 0

0 0 10 0

8 12 0 11

And now we have our last step. We assign the jobs to the red zeros in the array to the right,
and that gives us the minimum time (59 units). You might also note that we cannot cover the
zeros with less than 4 lines.

0 5 0 2

2 4 0 0

0 0 11 1

7 11 0 11

⇒

0 5 0 2

2 4 0 0

0 0 11 1

7 11 0 11

4



The Hungarian Method for Solving the Assignment Problem

We’re ready to state the Hungarian method now that we’ve seen a couple of examples.

• Initialize the algorithm:

– Subtract the lowest row value from each row.

– For each column, subtract the lowest value. Steps 1 and 2 create zeros to start the
algorithm off.

Side Remark: This also initializes the solution to the dual.

• Repeat:

– Cover the zeros with as few lines as possible. If the number of lines is less than n (in
this case, 4), then we are not optimal. If equal to n, stop.

– Find the minimum number in the cells that are uncovered, and subtract that value from
all uncovered cells.

– Add that number to the cells wherever two lines intersect.

If the number of lines required to cover all of the zeros is n, then we are able to assign one zero
to each person/job pair as follows:

Assignment of Zeros Sub-Algorithm

We do have to be a bit careful when assigning the zeros- We want to be sure that we don’t end
up with a sub-optimal solution due to “bad decisions” up front. For example, in the first example,
what happens if we assign the jobs, in order:

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

→

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

→

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

→ ??

So there is a little algorithm that will help us from getting trapped like this:

• Check rows first. If a row has exactly one zero, assign it (otherwise, leave the row for now).
If a cell has been assigned, close the row and column.

• Check open columns. If a column has exactly one zero, assign it and close the row/column.

Of course, there are special arrays that could be problematic if there are many zeros. Here’s
another quick example:

3 1 1 4

4 2 2 5

5 3 4 8

4 2 5 9

⇒ · · · ⇒

0 0 0 0

0 0 0 0

0 0 1 2

0 0 3 4

There are many ways to assign the jobs- Notice that a couple of them may get you into trouble
(make cell (1, 1) and (2, 1) assignments).

5



A More Extended Example

In this example, we’ll have a 5×5 to see how the algorithm works on a larger problem. You should
write down this initial table and see if you can perform the algorithm, and check back here after
you’re done. In this case, we won’t track the minimums.

The first step shown is to remove the smallest values in each row, the second step is the minimum
of each column.

11 7 10 17 10

13 21 7 11 13

13 13 15 13 14

18 10 13 16 14

12 8 16 19 10

⇒

4 0 3 10 3

6 14 0 4 6

0 0 2 0 1

8 0 3 6 4

4 0 8 11 2

⇒

4 0 3 10 2

6 14 0 4 5

0 0 2 0 0

8 0 3 6 3

4 0 8 11 1

Now three lines will cover all the zeros. We get the minimum value of the remaining cells (which
is 1). Subtract from all uncovered cells, add in cells that have intersections.

4 0 3 10 2

6 14 0 4 5

0 0 2 0 0

8 0 3 6 3

4 0 8 11 1

⇒

3 0 2 9 1

6 15 0 4 5

0 1 2 0 0

7 0 2 5 2

3 0 7 10 0

⇒

3 0 2 9 1

6 15 0 4 5

0 1 2 0 0

7 0 2 5 2

3 0 7 10 0

Now the minimum value is 1 again, so repeat. The minimum value of the remaining uncovered
cells is now 2, and perform the algorithm again. We now have an optimal assignment.

2 0 1 8 0

6 16 0 4 5

0 2 2 0 0

6 0 1 4 1

3 1 7 10 0

⇒

2 0 1 8 0

6 16 0 4 5

0 2 2 0 0

6 0 1 4 1

3 1 7 10 0

⇒

0 0 1 6 0

4 16 0 2 5

0 4 4 0 2

4 0 1 2 1

1 1 7 8 0

And we note that the final cost is the sum of these cij :

w = 11 + 7 + 13 + 10 + 10 = 51

Extensions

• The first extension: What if someone can take on more than one job?

You would have one row for the first job assignment, and a second row for the second job
assignment.

• What if we have fewer jobs than people?

You would create a dummy job.

6



• What if some people can not do certain jobs?

Replace the cost with M , a very large number.

• Is it possible to convert a transportation problem into an assignment problem?

Here’s an example (Problem 7 from the text). The main idea- Create a supply point for each
unit of supply and a demand point for each unit of demand.

Here’s the original tableau (costs shown):

Supply

3 1 2

2 3 3

Demand 1 4

We have 5 units of supply and 5 units of demand, so our new table is 5 × 5, partitioned by
(1,4) along the bottom for demand, and (2,3) along the side from supply.

3 1 1 1 1 1

3 1 1 1 1 1

2 3 3 3 3 1

2 3 3 3 3 1

2 3 3 3 3 1

1 1 1 1 1

These would be the assignment costs.

• What if we want to maximize the sum of the costs instead of minimize?

Negate all costs, then minimize. Here’s an example:

7 5 8 2

7 8 9 4

3 5 7 9

5 5 6 7

→

−7 −5 −8 −2

−7 −8 −9 −4

−3 −5 −7 −9

−5 −5 −6 −7

Now performing the first step of the algorithm will make this look “normal”:

1 3 0 6 (−8)

2 1 0 5 (−9)

6 4 2 0 (−9)

2 2 1 0 (−7)

∗ ∗ ∗ ∗ (−33)

→

0 2 0 6 (−8)

1 0 0 5 (−9)

5 3 2 0 (−9)

1 1 1 0 (−7)

(1) (1) 0 0 (−31)

7



0 2 0 6 (−8)

1 0 0 5 (−9)

4 2 1 0 (−8)

0 0 0 0 (−6)

(1) (1) 0 (−1) (−30)

For assignments,

0 2 0 6 (−8)

1 0 0 5 (−9)

4 2 1 0 (−8)

0 0 0 0 (−6)

(1) (1) 0 (−1) (−30)

8


