
The Shortest Path (Dijkstra’s Algorithm)

Last time we defined the PowerCo problem, and today we’ll solve it using an algorithm
developed by Edgar Dijkstra in 1959.

The nice thing about this algorithm is that not only do we find the shortest path from
our initial node (source) to our terminal node (sink) in our graph, but we actually find the
shortest path between the source and every other node in between.

Here’s the graph, and below that we’ll begin by listing our nodes and the source.
Side Remark: Normally I think our author does a fairly good job explaining algorithms,

but I think he makes it overly complicated here. You can use the book’s notation if you like,
but I think our notation here will be a lot more straightforward.

The algorithm starts by listing the nodes:

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞

A couple of notes here:

• The subscript is being used to identify which node we started with.

• ∞ is used to denote that the nodes are not connected.

• Once a boxed number appears in a column, we no longer put anything in that column.

Now, we see that 3 is the smallest unboxed distance, so it comes down and is boxed. Because
we will now be coming from node 3, the ”3” is placed at the front.

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞
3 31

Nothing goes under the boxed zero (that column is finished). Under column with node 2,
normally we would put∞, but because 41 is already there, we just bring it down. The other

1



columns work the way you think they should- the distance from node 3 to node 5 is 3, but
we already have used 3 units of distance, so we write 3 + 3 = 6 (with a subscript of 3):

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞
3 41 31 ∞ 63 ∞

We repeat the process. The next smallest unboxed number is the 4, so bring it down and it
becomes boxed. Put ”2” in the front, and fill in the rest. We might note that the distance
from node 2 to node 5 is 2 units, with 4 units already used, so the distance altogether is 6.
Six is also the distance used using node 3, so there is a tie. We could keep 63, or write 62-
your choice.

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞
3 41 31 ∞ 63 ∞
2 41 72 62 ∞

Now bring down 62 and repeat:

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞
3 41 31 ∞ 63 ∞
2 41 72 62 ∞
5 72 62 85

Repeat the process a couple of times, and we get the finished table:

1 2 3 4 5 6

1 0 41 31 ∞ ∞ ∞
3 41 31 ∞ 63 ∞
2 41 72 62 ∞
5 72 62 85

4 72 85

6 85

To interpret this solution, we see go down the column for node 6, and see that the shortest
distance to node 6 came from node 5 and had a value of 8.

To backtrack the path, go over to column 5, and go down to see that you could use either
6 from node 3 or 6 from node 2. Using node 3 first, we came from node 1 (so the path was
1-3-5-6 with a value of 8), or using node 2, the path would be (1-2-5-6, also with a value of
8).

You also note that the boxed value is the shortest path from the source to that node,
which may come in handy sometime.

2



The second example is straightforward. Copy down the graph with the weighted edges
and try the algorithm out yourself, then come back to the notes to check your answer against
the one below.

1 2 3 4 5 6 7

1 0 151 201 ∞ ∞ ∞ ∞
2 151 201 252 402 ∞ ∞
3 201 252 402 403 ∞
4 252 402 40∗

4 554

5 402 404 505

6 404 505

7 505

(*) There’s a tie between 3 and 4. We used 404, but these could be 403 if you didn’t want
to change.

In conclusion, we had one path for the shortest path (we didn’t need node 6), and it had
a value of 50:

1− 2− 5− 7

Lastly, we show that the source doesn’t have to be furthest right. Here, the nodes are
alphabetical, and we want to go from Node a and list the (shortest) distance to all other
nodes. Once again, copy down the graph and see if you get the same answer that is shown
below.

3



SOLUTION:
a b c f g h i

a 0 14a ∞ ∞ 10a 17a ∞
g 13g ∞ ∞ 10a 16g 14g

b 13g 22b 23b 16g 14g

i 22b 21i 15i 14i

h 22b 21i 15i

f 22b 21i

c 22b

Now we can easily determine the distance from
node a to all other nodes. This allows us to
draw something called a “minimum spanning
tree”. The way it goes is the following:
Put Node a at the top. Which node is closest
to node a? Node g is the only node whose
shortest distance comes from node a, so we
connect node g to a.
What nodes are connected to g? We look at
the boxed values, and see 13g indicates node b
is connected to node g, and the boxed 14g indi-
cates node i is connected to node g. Next, we
see that node h is connected to i, and node f is
connected to i (so there’s a branching there).
And we continue this way to construct the fol-
lowing interesting “tree”.

4


