Section 8.3: Network Flow

We can think of this as an abstraction of material flowing through the edges, to/from the vertices of a
directed graph.

Setup

e Given graph G = (V, E) with source node s € V and terminal node t € V (this is more common than
our textbook notation of so and si).

Note: A graph G is appropriate for a flow if it has (i) no parallel edges, (ii) no edge enters the source
s, and (iii) no edge leaves the terminal ¢.

e For each edge in F, there is an associated non-negative integer c. that represents the capacity of the
edge. See the example below.

L-r
\i

Flow

Intuitively, a flow will represent material flowing through the network from the source to the terminal. Each
edge e € E will be assigned a real number f. that represents how much stuff is being transported. Our
textbook uses parentheses to denote the flow and the capacity: (f.)c.. For example, (2)4 would mean that
the edge capacity is 4, and the flow uses 2. Let’s define what we mean by flow.

Definition: A flow on a graph G is a function f such that:

e The domain is the set of edges, and the output is f., the flow on edge e € F.
e The flow must be non-negative and not exceed the capacity of the edge: For each e € E, 0 < f, < c.

e For every node (besides source and the terminal), the flow in must be equal to the flow out. That is,
the flow is conserved.

e We might add that the flow out of the source must be equal to the flow into the sink. Our textbook
adds an edge from the terminal to the source, but that is not common, and I'll typically not put that
in.

e Additionally, the value of the flow is the total flow out of the source.

In the Max Flow Problem, we need to determine f. for each edge e that maximizes the value of the flow
(and satisfies the other constraints). In our earlier example, the sum of the capacities into the terminal node
is 7, so the value of the flow on that network cannot be larger than that.

Example: Convert the Max Flow Problem to an LP
7 (D

L‘r \)
You might notice that the definition of a flow O /

actually sets up the linear program. Let’s keep

to our previous example and set up the max-flow \ /
LP. \l,

We want to maximize the sum of the flows out of the source:

fsl +f52 +f53

such that (i) the flows are non-negative, do not exceed the capacities, and (ii) flow is conserved at each node,
and the sum of the flows out of the source is equal to the sum into the terminal. Here are the constraint
equations that provide these:

ngsl §2

0< feo <8

02;2 <3 fs1 = fit + fiz Node 1
Ozfiz 27 fs2+ fiz = fas Node 2

0 < fas <2 fs3+ fo3 = fat Node 3
Ozflt <2 fa+ feo+ fss = i+ fa Nodes st
0<f3r <5

Before we look at the Ford-Fulkerson algorithm, let’s see if we can reason out a good flow from the
example. First, let’s just find a path from s to ¢- For example, s — 1 —t is a reasonable path, and both edges
have a capacity of 2, so we can max that out and make fo; = 2 and fi; = 2. Any other paths? We can go
s — 3 —t, and we see capacities of 3 and 5. Look for the smallest capacity along the path (it is called the
bottleneck capacity), and that will be flow for the path. In this case, fs3 = 3 = f5;, and so far the value of
the flow is 5.

Some vocabulary: The paths we're finding are £

called augmenting paths because we're using |. 2}z
them to augment the flow. Are there any aug- fz/’

menting paths remaining? We still have s — 2 — N i2]8 o

3 — t left, and it looks like the bottleneck capac- S f_\!

ity is 2. If we check the sum of the flow into i2]

the terminal node, we see that we have made the f3]3-\9 i (5)5
maximum capacity of 7 units.

"'_'\

t)

r..r

W

Cuts

Definition: Given a graph G, a cut(A, B) is a partition of the vertices in V into (distinct) sets s € At € B.

Definition: The capacity of cut(A, B) is the sum of the capacities of the edges that run FROM A TO B.
For notation, we might say that:

cap(A, B) = Z Ce

e out of A

In the example labeled “Cut 17, set A = {s,1,3} and set B = {2,t}. The capacity of the cut is the
sum of the capacities of the edges leading out of A into B. In this case, we have edges (1,¢), (1,2), (3,t) and
(s,2). Summing these capacities:

cap(A,B)=2+T7+5+8=22

Similarly, in the example labeled “Cut 27, set A = {s,1,2,3} and B = {t}. The capacity of this cut is then
the sum of the capacities of the edges going to ¢, which is 2+ 5= 7.
Cuts and Flows
Given any flow f and any cut (A4, B), we get what has been called the Flow Value Lemma.
Z fe - Z fe = Val(f)
e out of 4 ein to A
Using the flow that we found, let’s compute some of these quantities using Cut 1, then Cut 2.
e Cut 1:

— The capacity of the cut is 22. That is, cap(4, B) = 22.

— The sum of the flows out of A: The 4 edges were: (1,t),(1,2), (3,t),(s,2), with 2+0+3+2=7.
— The sums of the flows into A: (2,3) is the only edge going in, so that’s 2.

— Therefore, the net flow across the cut is val(f) =7 —2 = 5.

e For cut 2, you might verify that the net flow across the cut is 7.

Using the flow value lemma, it’s easy to see one relationship between the value of the flow and the
capacity of a cut. Once again, given an arbitrary flow f and cut with partitions (A, B), we have:

Val(f) = Z fe_ Z fe

e out of 4 einto A
< > f
e out of A
< Z ce = cap(4, B)
e out of 4

The Max-Flow, Min-Cut Theorem

The maximum value of an s — ¢t flow is equal to the minimum capacity over all s — ¢ cuts. Basically, if we
can find a cut whose capacity is equal to the current flow, we’ve found the maximum.

To whet your curiousity a bit, we’ll note that it is possible to construct the max-flow problem as a primal
linear program, and the min-cut problem as its dual- We’ll leave that for later perhaps.

In our previous example, we see that Cut 2 gave a capacity of 7, and that was also the value of the flow.
In that case, the theorem says that we have a maximum flow.

Graphs and Residual Graphs

For our graph G, there is a very useful associated graph G called the residual graph. Our textbook is
confusing on this point, so let’s see if we can formalize this concept a bit. This is all followed by several
examples, followed by the Ford-Fulkerson Algorithm.

How to build the Residual Graph

Given graph G with a given flow, the following steps will create the residual graph Gy. We'll see that the
residual graph helps us to determine if we need to continue to look for more augmenting paths or not (which
is very helpful). To build the residual graph,

e For each edge e = (u,v) and f. > 0 on graph G, create a backwards edge going from v to v on graph
G with a “residual capacity” along the backwards edge f..

e For each edge e = (u,v) and f. < ¢, on graph G, create a forward edge from u to v on graph Gy with
residual capacity ce — fe.

That’s it. Let’s try it out- Below I've drawn a graph G with a flow. Let’s compute the residual graph G-
We’ll go through each edge of the graph G on the top, and the bottom graph will be the residual graph G.

(s,1). Create backward edge (1,s), label
with 20. Since f. = c. = 20, no forward
edge left.

e (5,2). Flow f. = 0, so do nothing (keep the
edge and capacity).

e (1,2). Create backward edge (2,1) label
with 20. Now,

Ce — fe=30—-20=10
so forward edge has label 10.

e (1,t). Flow f. = 0, so keep the forward
edge and the capacity 10.

e (2,t). Create backward edge (¢,2), label .
with 20. No forward edge. e 20

(&

You might recognize the utility of the residual graph right away- Using the residual graph, it is easy to
find augmenting paths from s to ¢ by following the arrows. The “backward edge” may be confusing at first-

If you go on a backward edge, you can think of returning the flow that was already used. For example, I see
a nice path s —2 — 1 — ¢ that has a capacity of 10.
Can you draw the new residual graph? Here it

/ CQ is to the left, and using the residual graph, it
Q is very clear there are no longer any paths from
1 the source to the terminal, so we have found the
\ maximum flow (can you write down the flow from

@ / the residual?), which is 30. I think we’re ready

for the algorithm now!

The Ford-Fulkerson Algorithm

First we’ll state the algorithm which is really how we’ve been finding the maximum flow in our two examples.

1. Find an s — t directed path. Find the bottleneck b for the path, and add this value to the flow f. to
each edge in the path (for graph G).

e No path? Stop. The maximum flow has been found.
2. Build the residual graph G for the flow following the steps below (these are the same as before):

e For each edge e = (u,v) and f. > 0, create a backwards edge going from v to u with a “residual
capacity” along the backwards edge f..

e For each edge e = (u,v) and f, < c., create a forward edge from u to v with residual capacity

Ce — fe~
3. Repeat.

As a side remark, the graphs we’ve been working with have been simple enough that we don’t necessarily
need the residual graph, but this graph is used for other things, so its a good idea to become accustomed to
it (and the notation).

Example 2

~ f .
pl(l) ———— 3
. 2)
@ .
Here is a graph- Let’s go through the Ford-Fulkerson algorithm. To begin, we’ll push 4 through the top

path, s —1 —3 —t¢ and we might as well take care of the bottom arc as well and push 4 through s —2 —4 —t¢.
The residual graph is given below:

n""\l
‘/ﬁ’_—‘> Qj How about path
@ “”'@
s—1—4—-3—-1

‘r The bottleneck value is 6.

The next residual graph is given below.

e ,f"(_,r @

SN

(i-'

T~

\
@fj

From the source, we are forced to go to node 2. But at node 2, there is nowhere else to go. We’re done.
Here is the original graph G with the flow values listed.

o —Y¢ e

W’l

@f’ ‘ ¢ té) ¢ @:‘j

@-}) - gy e
(v a @

Let’s take a random cut, say A = {s,2,3} and B = {1,4,¢}. To find the capacity of the cut, consider all
edges going from a node of A to a node of B. In this case, the edges are:

(s,1),(2,4),(3,t) = cap(4,B)=10+9+10=29

We can also consider A = {s,1,2} and B = {3,4,t}. In this case, the capacity of the cut is 4 + 8 + 9 = 21.
We might also take A = {s}. In that case, the capacity of the cut is 10+ 10 = 20. Is it possible to construct
a cut that is equal to the maximum flow? We’ll state the algorithm without proof.

Finding the Minimum Cut

Use the residual graph:

e Find all nodes that are reachable from the source.

e The cut consists of the edges from nodes reachable from the source to the nodes that are not reachable
from the source.

In our example above, that means A = {s,2} and B = {1,3,4,t}. The capacity of this cut is using edges
(s,1) and (2,4) only, so it is 10 +9 = 19, and that is the value of the flow. Good job!

Example:

Given below is a network with capacities. Use the Ford-Fulkerson algorithm to determine the maximum
flow, and then determine a cut that satisfies the Max-Flow, Min-Cut Theorem. (You should practice using
the residual graphs, which will be given below in the solution).

Here’s the graph G:

Don’t look below until you’ve tried it!

A flow for graph G and the residual graph Gy are shown below. The max flow was 14, and a cut was

A = {s,b}.

