Review Questions, Exam 1, Ops Research

- 1. There were 4 assumptions when constructing a linear program. List them (Hint: One was "Proportionality").
- 2. What are the four possible outcomes when solving a linear program? Hint: The first is that there is a unique solution to the LP.
- 3. The following are to be sure you understand the process of constructing a linear program:
 - (a) Exercise 2, 31 Chapter 3 review (Be sure you can solve an LP graphically)
 - (b) Exercise 6, 18 Chapter 3 review (A ton is 2000 lbs)
 - (c) Exercise 22, Chapter 3 review. Hint: Consider using a triple index on your variables.
 - (d) Exercise 47 in Chapter 3 review.
 - (e) Exercise 12 in Chapter 4 review (set up the LP only for "set 1" only- do NOT solve).
 - (f) Exercise 17 in Chapter 4 review.
- 4. Convert the following LP to one in standard form. Write the result in matrix-vector form, giving \mathbf{x} , \mathbf{c} , A, \mathbf{b} (from our formulation).

$$\min z = 3x - 4y + 2z$$

$$\text{st} \quad 2x - 4y \ge 4$$

$$x + z \ge -5$$

$$y + z \le 1$$

$$x + y + z = 3$$

with x > 0, y is URS, z > 0.

- 5. Suppose the BFS for an optimal tableau is degenerate and a NBV in Row 0 has a zero coefficient. Show by example that either of the following could occur:
 - The LP has more than one optimal solution.
 - $\bullet\,$ The LP has a unique optimal solution.
- 6. Consider again the "Wyndoor" company example we looked at in class:

$$\min z = 3x_1 + 5x_2
\text{st} x_1 \le 4
2x_2 \le 12
3x_1 + 2x_2 \le 18$$

with x_1, x_2 both non-negative.

- (a) Rewrite so that it is in standard form.
- (b) Let s_1, s_2, s_3 be the extra variables introduced in the last answer. Is the following a basic solution? Is it a basic feasible solution?

$$x_1 = 0, x_2 = 6, s_1 = 4, s_2 = 0, s_3 = 6$$

Which variables are BV, and which are NBV?

- (c) Find the basic feasible solution obtained by taking s_1, s_3 as the non-basic variables.
- 7. Draw the feasible set corresponding to the following inequalities:

$$x_1 + x_2 \le 6$$
, $x_1 - x_2 \le 2$ $x_1 \le 3$, $x_2 \le 6$

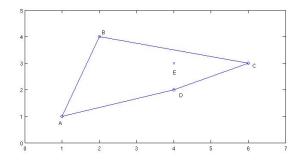
with x_1, x_2 non-negative.

- (a) Find the set of extreme points.
- (b) Write the vector $[1,1]^T$ as a convex combination of the extreme points.
- (c) True or False: The extreme points of the region can be found by making exactly two of the constraints binding, then solve.
- (d) If the objective function is to maximize $2x_1 + x_2$, then (a) how might I change that into a minimization problem, and (b) solve it.
- 8. Consider the unbounded feasible region defined by

$$x_1 - 2x_2 \le 4$$
, $-x_1 + x_2 \le 3$

with x_1, x_2 non-negative. Consider the vector $\mathbf{p} = [5, 2]$.

- (a) Show that \mathbf{p} is in the feasible region.
- (b) Set up the system you would solve in order to write **p** in the form given in Theorem 2 above (provide a specific vector **d**).
- 9. Consider the figure with points A(1,1), B(1,4) and C(6,3), D(4,2) and E(4,3).
 - Write the point E as a convex combination of points A, B and C.
 - Can E be written as a convex combination of A, B and D? If so, construct it.
 - Can A be written as a linear combination of A, B and D? If so, construct it.



- 10. Finish the definition: Two basic feasible solutions are said to be adjacent if:
- 11. Let **d** be a direction of unboundedness. Using the *definition*, prove that this means that $r\mathbf{d}$ is also a direction of unboundedness, for any constant $r \geq 0$.
- 12. If C is a convex set, then $\mathbf{d} \neq 0$ is a direction of unboundedness for C iff $\mathbf{x} + d \in C$ for all $\mathbf{x} \in C$ (Use the definition of unboundedness).
- 13. For an LP in standard form (see above), prove that the vector \mathbf{d} is a direction of unboundedness iff $A\mathbf{d} = 0$ and $\mathbf{d} \geq 0$.
- 14. Show that the set of optimal solutions to an LP (assume in standard form) is convex.
- 15. Let a feasible region be defined by the system of inequalities below:

$$\begin{array}{rcl}
-x_1 + 2x_2 & \leq 6 \\
-x_1 + x_2 & \leq 2 \\
x_2 & \geq 1 \\
x_1, x_2 \geq 0
\end{array}$$

The point (4,3) is in the feasible region. Find vectors \mathbf{d} and $\mathbf{b}_1, \dots \mathbf{b}_k$ and constants σ_i so that the Representation Theorem is satisfied (NOTE: Your vector \mathbf{x} from that theorem is more than two dimensional).

16. Let a feasible region be defined by the system of inequalities below:

$$\begin{array}{rrr} -x_1 + x_2 & \leq 2 \\ x_1 - x_2 & \leq 1 \\ x_1 + x_2 & \leq 5 \\ x_1, x_2 \geq 0 \end{array}$$

The point (2,2) is in the feasible region. Find vectors \mathbf{d} and $\mathbf{b}_1, \dots \mathbf{b}_k$ and constants σ_i so that the Representation Theorem is satisfied (NOTE: Your vector \mathbf{x} from that theorem is more than two dimensional).

- 17. These two proofs go together- the first one you can "hand waive" through.
 - (a) Suppose that $\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n$, and let $\sigma_1, \cdots, \sigma_n$ be non-negative constants so that $\sum_{i=1}^{n} \sigma_i = 1$. Show that

$$\lambda_1 < \sigma_1 \lambda_1 + \sigma_2 \lambda_2 + \cdots + \sigma_n \lambda_n < \lambda_n$$

(b) Show that, if \mathbf{x} is in the convex hull of vectors $\mathbf{b}_1, \dots \mathbf{b}_k$, then for any constant vector \mathbf{c} ,

$$\mathbf{c}^T \mathbf{x} \leq \max_i \left\{ \mathbf{c}^T \mathbf{b}_i \right\}$$

- 18. True or False, and explain: The Simplex Method will always choose a basic feasible solution that is **adjacent** to the current BFS.
- 19. Given the current tableau (with variables labeled above the respective columns), answer the questions below.

- (a) Is the tableau optimal (and did your answer depend on whether we are maximizing or minimizing)? For the remaining questions, you may assume we are maximizing.
- (b) Give the current BFS.
- (c) Directly from the tableau, can I increase x_2 from 0 to 1 and remain feasible? Can I increase it to 4?
- (d) If x_2 is increased from 0 to 1, compute the new value of z, x_1, s_1 (assuming s_2 stays zero).
- (e) Write the objective function and all variables in terms of the non-basic (or free) variables, and then put them in vector form.
- 20. Solve first using big-M, then repeat using the two-phase method.

21. Using the big-M method on a maximization problem, I got the following tableau:

	x_1	x_2	x_3	s_1	e_1	e_2	a_1	a_2	rhs
	-1/2 + 2M	-5/2 + M	M	1/2 + M	M	M	0	0	2-3M
$\overline{x_3}$	1/2	1/2	1	1/2	0	0	0	0	2
a_1	-3/2	-1/2	0	-1/2	-1	0	1	0	2
a_2	-1/2	-1/2	0	-1/2	0	-1	0	1	1

Should I stop or should I go? If I stop, what should I conclude?

22. Here's a tableau that we've obtained from using the Simplex Method. Answer the questions below about it.

- (a) Is this tableau terminal (has the Simplex Method stopped)? If so, interpret the solution shown. If not, continue until you stop.
- (b) Write down the system of equations that this tableau represents (be sure to write BVs in terms of NBVs).
- (c) Given the tableau shown, the current basic variables are s_1, x_2, x_3 . Is it possible that the **previous** set of basic variables were: s_1, s_2, x_3 ? To see, compute the previous Row 0. (Hint: You want to replace or substitute x_2 with s_2 as basic).