Homework, Section 6.10 (Complementary Slackness)

1. Consider the LP:

$$
\begin{aligned}
\max z= & 2 x_{1}+5 x_{2}+3 x_{3} \\
\text { st } & 2 x_{1}+x_{2}+2 x_{3} \leq 10 \\
& \frac{3}{2} x_{1}+6 x_{2}-2 x_{3} \leq 18 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(a) State the dual.
(b) Given that $x_{1}=0, x_{2}=3, x_{3}=0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual.
(c) Given that $x_{1}=4, x_{2}=2, x_{3}=0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?
(d) Given that $x_{1}=0, x_{2}=4, x_{3}=3$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?
2. Consider the LP:

$$
\begin{aligned}
\max z= & 5 x_{1}+10 x_{2} \\
\text { st } & x_{1}+3 x_{2} \leq 50 \\
& 4 x_{1}+2 x_{2} \leq 60 \\
& x_{1} \leq 5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(a) State the dual.
(b) Given that $x_{1}=5, x_{2}=15$ is an optimal solution to the LP, use complementary slackness to find the optimal solution to the dual.

