Homework, Section 6.10 (Complementary Slackness)

1. Consider the LP:

$$
\begin{aligned}
\max z= & 2 x_{1}+5 x_{2}+3 x_{3} \\
\text { st } & 2 x_{1}+x_{2}+2 x_{3} \leq 10 \\
& (3 / 2) x_{1}+6 x_{2}-2 x_{3} \leq 18 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(a) State the dual. SOLUTION:

$$
\begin{aligned}
\min w= & 10 y_{1}+18 y_{2} \\
\text { st } & 2 y_{1}+(3 / 2) y_{2} \geq 2 \\
& y_{1}+6 y_{2} \geq 5 \\
& 2 y_{1}-2 y_{2} \geq 3 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

(b) Given that $x_{1}=0, x_{2}=3, x_{3}=0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual.
SOLUTION: Looking at our complementary variables (and solving for slack s_{1}, s_{2}), we have

x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
0	3	0	7	0
e_{1}	e_{2}	e_{3}	y_{1}	y_{2}
	0		0	

This means that the second constraint of the dual is actually an equality. With $y_{1}=0$, we see that $y_{2}=5 / 6$. We can then finish the excess variables to fill in the entire picture:

x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
0	3	0	7	0
e_{1}	e_{2}	e_{3}	y_{1}	y_{2}
$-3 / 4$	0	$-14 / 3$	0	$5 / 6$

(And we note that this is not feasible for the dual).
(c) Given that $x_{1}=4, x_{2}=2, x_{3}=0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?
SOLUTION: Looking at our complementary variables (and solving for slack s_{1}, s_{2}), we have

x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
4	2	0	0	0
e_{1}	e_{2}	e_{3}	y_{1}	y_{2}
0	0			

This means that the first two inequalities of the dual are equalities, so then we can solve the corresponding system for y_{1}, y_{2}.

From those, we see $e_{3}=-2 / 3$, so this is not a feasible solution for the dual.
(d) Given that $x_{1}=0, x_{2}=4, x_{3}=3$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?
SOLUTION: From what is given, we can inspect our complementary variables and by complementary slackness, we can insert some zeros:

x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
0	4	3	0	0
e_{1}	e_{2}	e_{3}	y_{1}	y_{2}
	0	0		

This says that the second and third constraints for the dual are equalities, from which we can solve for y_{1}, y_{2}, and we get $y_{1}=2$ and $y_{2}=1 / 2$, and from those we can compute e_{3} to finish our table:

x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
0	4	3	0	0
e_{1}	e_{2}	e_{3}	y_{1}	y_{2}
$11 / 4$	0	0	2	$1 / 2$

This is optimal, since we have a basic solution that is feasible for both the primal and the dual. Checking, we see that $z=w=29$.
2. Consider the LP:

$$
\begin{aligned}
\max z= & 5 x_{1}+10 x_{2} \\
\text { st } & x_{1}+3 x_{2} \leq 50 \\
& 4 x_{1}+2 x_{2} \leq 60 \\
& x_{1} \leq 5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(a) State the dual.

SOLUTION: The dual is given by:

$$
\begin{aligned}
\min w= & 50 y_{1}+60 y_{2}+5 y_{3} \\
\text { st } & y_{1}+4 y_{2}+y_{3} \geq 5 \\
& 3 y_{1}+2 y_{2} \geq 10 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

(b) Given that $x_{1}=5, x_{2}=15$ is an optimal solution to the LP, use complementary slackness to find the optimal solution to the dual.
SOLUTION: Same reasoning as the last question- first look at the complementary variables and locate the zeros.

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
5	15	0	10	0
e_{1}	e_{2}	y_{1}	y_{2}	y_{3}
0	0		0	

From this, we see that the two inequalities for the dual must be equalities. Setting $y_{2}=0$, we can solve for y_{1}, y_{3}. That gives

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
5	15	0	10	0
e_{1}	e_{2}	y_{1}	y_{2}	y_{3}
0	0	$10 / 3$	0	$5 / 3$

These should be optimal since they're both feasible. Verify that $z=w$, and we see that this is the case- $z=w=175$.

