Homework, Section 6.10 (Complementary Slackness)

1. Consider the LP:

$$\max z = 2x_1 + 5x_2 + 3x_3$$

st $2x_1 + x_2 + 2x_3 \le 10$
 $(3/2)x_1 + 6x_2 - 2x_3 \le 18$
 $x_1, x_2, x_3 \ge 0$

(a) State the dual. SOLUTION:

$$\min w = 10y_1 + 18y_2$$

st $2y_1 + (3/2)y_2 \ge 2$
 $y_1 + 6y_2 \ge 5$
 $2y_1 - 2y_2 \ge 3$
 $y_1, y_2 \ge 0$

(b) Given that $x_1 = 0, x_2 = 3, x_3 = 0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual.

SOLUTION: Looking at our complementary variables (and solving for slack s_1, s_2), we have

This means that the second constraint of the dual is actually an equality. With $y_1 = 0$, we see that $y_2 = 5/6$. We can then finish the excess variables to fill in the entire picture:

x_1	x_2	x_3	s_1	s_2
0	3	0	7	0
e_1	e_2	e_3	y_1	y_2
-3/4	0	-14/3	0	5/6

(And we note that this is not feasible for the dual).

(c) Given that $x_1 = 4, x_2 = 2, x_3 = 0$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?

SOLUTION: Looking at our complementary variables (and solving for slack s_1, s_2), we have

This means that the first two inequalities of the dual are equalities, so then we can solve the corresponding system for y_1, y_2 .

$$\begin{array}{rcl} 2y_1 + \frac{3}{2}y_2 &= 2\\ y_1 + 6y_2 &= 5 \end{array} \quad \Rightarrow \quad \begin{array}{rcl} y_1 = 3/7\\ y_2 = 16/21 \end{array}$$

From those, we see $e_3 = -2/3$, so this is not a feasible solution for the dual.

(d) Given that $x_1 = 0, x_2 = 4, x_3 = 3$ is an basic solution to the LP, use complementary slackness to find the complementary basic solution to the dual. Are these solutions optimal?

SOLUTION: From what is given, we can inspect our complementary variables and by complementary slackness, we can insert some zeros:

This says that the second and third constraints for the dual are equalities, from which we can solve for y_1, y_2 , and we get $y_1 = 2$ and $y_2 = 1/2$, and from those we can compute e_3 to finish our table:

	$\begin{array}{c} x_1 \\ 0 \end{array}$	$\begin{array}{c} x_2 \\ 4 \end{array}$	$\begin{array}{c} x_3 \\ 3 \end{array}$	$\begin{vmatrix} s_1 \\ 0 \end{vmatrix}$	${{s_2}\atop{0}}$
-	$e_1 \\ 11/4$	e_2 0	e_3 0	$\begin{array}{c} y_1 \\ 2 \end{array}$	$\frac{y_2}{1/2}$

This is optimal, since we have a basic solution that is feasible for both the primal and the dual. Checking, we see that z = w = 29.

2. Consider the LP:

$$\max z = 5x_1 + 10x_2$$

st $x_1 + 3x_2 \le 50$
 $4x_1 + 2x_2 \le 60$
 $x_1 \le 5$
 $x_1, x_2 \ge 0$

(a) State the dual.

SOLUTION: The dual is given by:

$$\min w = 50y_1 + 60y_2 + 5y_3$$

st $y_1 + 4y_2 + y_3 \ge 5$
 $3y_1 + 2y_2 \ge 10$
 $y_1, y_2, y_3 \ge 0$

(b) Given that $x_1 = 5, x_2 = 15$ is an optimal solution to the LP, use complementary slackness to find the optimal solution to the dual.

SOLUTION: Same reasoning as the last question- first look at the complementary variables and locate the zeros.

From this, we see that the two inequalities for the dual must be equalities. Setting $y_2 = 0$, we can solve for y_1, y_3 . That gives

$\begin{array}{c} x_1 \\ 5 \end{array}$	$x_2 \\ 15$	$s_1 \\ 0$	$\frac{s_2}{10}$	$s_3 \\ 0$
e_1 0	$e_2 \\ 0$	$\begin{array}{c} y_1\\ 10/3\end{array}$	$\begin{array}{c} y_2 \\ 0 \end{array}$	$\frac{y_3}{5/3}$

These should be optimal since they're both feasible. Verify that z = w, and we see that this is the case- z = w = 175.