6.7: The Dual Theorem, Part 1

Before we start, we look at several Lemmas to get the ball rolling. To set up the notation, we will assume the normal form of our primal and dual,

Primal: Dual:
max
$$z = \mathbf{c}^T \mathbf{x}$$
 min $w = \mathbf{b}^T \mathbf{y}$
st $A\mathbf{x} \le \mathbf{b}$ st $A^T \mathbf{y} \ge \mathbf{c}$
 $\mathbf{x} \ge 0$ $\mathbf{y} \ge 0$

where A is $m \times n$ with rank m.

- 1. RECALL: $(AB)^T = B^T A^T$ (where A, B could be vectors or arrays).
- 2. Exercise: Assume all vectors are in \mathbb{R}^n . If $\mathbf{x} \ge \mathbf{c}$, then is $\mathbf{y}^T \mathbf{x} \ge \mathbf{y}^T \mathbf{c}$? Give conditions for which it is true, and prove it. SOLUTION: It is true if $\mathbf{y} \ge 0$.
- 3. Lemma 1: (Weak Duality) If we choose any feasible point for the primal, \mathbf{x} , and any feasible point for the dual, \mathbf{y} , then $z \leq w$.

Proof: We note that this means we need to show $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$. If \mathbf{x}, \mathbf{y} are each feasible, then we know that

$$A\mathbf{x} \leq \mathbf{b}$$
 and $A^T\mathbf{y} \leq \mathbf{c}$

Now, $\mathbf{x} \ge 0$ and $\mathbf{y} \ge 0$, so we can dot the first with \mathbf{y} and the second by \mathbf{x} :

 $\mathbf{y}^T(A\mathbf{x}) \leq \mathbf{y}^T \mathbf{b} \qquad \text{and} \qquad \mathbf{x}^T(A^T \mathbf{y}) \geq \mathbf{x}^T \mathbf{c}$

And with this:

$$\mathbf{y}^T(A\mathbf{x}) = \mathbf{x}^T(A^T\mathbf{y})$$

we get:

$$\mathbf{x}^T \mathbf{c} \leq \mathbf{y}^T A \mathbf{x} \leq \mathbf{y}^T \mathbf{b}$$

4. Lemma 2: (Strong Duality) Let x, y be any feasible points to the primal and dual, respectively, so that

$$\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$$

Then, the solutions are optimal for their respective LPs.

Note: This lemma does not guarantee that such points exist.

Proof: We know that, for any **y** that is feasible for the dual, and any **x** feasible for the primal, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$.

Now, consider the **y** for which z = w. Then this is an upper bound for all $\mathbf{c}^T \mathbf{x}$, so there is no **x** that is larger (so the given **x** is a maximizer).

Similarly, $\mathbf{c}^T \mathbf{x}$ is a lower bound for all \mathbf{y} , so no \mathbf{y} vector will yield a smaller value (so the given \mathbf{y} is a minimizer).

- 5. Lemmas 3 and 4:
 - If the primal is unbounded, then the dual is infeasible. (HW 7) (The contrapositive is easy: If there is any feasible point to the dual, then $\mathbf{b}^T \mathbf{y}$ would be an upper bound for any feasible point in the primal).
 - If the dual is unbounded, then the primal is infeasible. (HW 8)
 - It is possible that both the primal and dual are infeasible.