The Dual Theorem, Part II

The Dual Theorem

Let \mathcal{B} be an optimal basis for the primal. Then

$$\mathbf{y} = (\mathbf{c}_{\mathcal{B}}^T B^{-1})^T$$

is an optimal solution to the dual. Furthermore, the optimal values of the primal and dual are equal (z = w).

Side Remark: We could add an extra sentence to this theorem: If both problems are feasible, then both problems have finite optimal solutions.

Proof: We show that the given \mathbf{y} is feasible, then we'll show that (using the two given solutions) z = w which will make \mathbf{y} optimal for the dual.

• To show that \mathbf{y} is feasible, we need to show that $A^T \mathbf{y} \ge \mathbf{c}$.

Writing this out, we want:

$$A^T (\mathbf{c}_B^T B^{-1})^T \ge \mathbf{c}$$

The expression on the RHS looks familar- Looking at it more closely,

$$A^{T}(\mathbf{c}_{B}^{T}B^{-1})^{T} = A^{T}(B^{-1})^{T}\mathbf{c}_{B} = \left(\mathbf{c}_{B}^{T}B^{-1}A\right)^{T} \ge \mathbf{c}$$

Now we can finish it up, and present a proper proof:

From the optimality conditions given, we know that the Row 0 coefficients of the optimal primal tableau are all greater than or equal to 0:

$$-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A \ge \vec{0}$$

Therefore, simplifying this, we have:

$$\mathbf{c}_B^T B^{-1} A \ge \mathbf{c}^T \quad \Rightarrow \quad A^T (\mathbf{c}_B^T B^{-1})^T \ge \mathbf{c}$$

or, $A^T \mathbf{y} \geq \mathbf{c}$. We have shown that \mathbf{y} is feasible.

• We now know that **y** is feasible. Now we show that z = w:

For the primal, z is determined by the RHS of the optimal tableau, which we know (from 6.2) is:

$$z = \mathbf{c}_B^T B^{-1} \mathbf{b} = \mathbf{y}^T \mathbf{b} = w$$

We have now proven the Dual Theorem, and at the same time we can consider the following Lemma:

Lemma:

(A remark in the book): A basis gives a feasible solution to the primal iff $\mathbf{c}_B^T B^{-1}$ is feasible for the dual.

This gives me a way of **tying** the solutions together!

Implementing the Dual Theorem

We have found that:

• Row 0 in the optimal tableau is given by

$$-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A$$

- We talked about what the optimal Row 0 coefficients are in each of the following cases (if not a basic variable):
 - For a slack variable, s_i , the Row 0 coefficient is $\mathbf{c}_B^T(B^{-1})_i$.
 - For an excess variable, e_i , the Row 0 coefficient is $-\mathbf{c}_B^T(B^{-1})_i$.
 - For an artificial variable a_i , the Row 0 coefficient (using big M) is $\mathbf{c}_B^T(B^{-1})_i M$
- Each dual variable is associated with a constraint from the primal.
- Each dual variable is then associated to either a slack variable (s_i for a \leq constraint), an excess variable (e_i for a \geq constraint) or an artificial variable (a_i for an = constraint) from the primal.
- Put the list of three cases together with the fact that

$$\mathbf{y}^T = \mathbf{c}_B^T B^{-1}$$

and we get the following rules for constructing the optimal solution for the dual from the optimal solution to the primal. Denote by s_i^*, e_i^*, a_i^* as the (optimal) Row 0 coefficients for variables s_i, e_i, a_i respectively. For each y_i of the dual, locate the corresponding constraint.

- If the constraint has slack s_i ,

 $y_i = s_i^*$

 $y_i = -e_i^*$

- If the constraint has excess e_i ,
- If the constraint is = and has artificial variable a_i , then

$$y_i = a_i^* - M$$

Important Note: If we go from the dual to the primer, the first two points are still valid. In the last one, add M instead of subtracting it.