The Dual Theorem (6.7)
Let \mathcal{B} be an optimal basis for the primal. Then

$$
\mathbf{y}=\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1}\right)^{T}
$$

is an optimal solution to the dual.

Row 0 for optimal: $-\mathbf{c}^{T}+\mathbf{c}_{B}^{T} B^{-1} A$.

- Slack s_{i} coeff in Row 0 w/orig col \mathbf{e}_{j} :

$$
-0+\mathbf{c}_{B}^{T} B^{-1} \mathrm{e}_{j}=\mathbf{c}_{B}^{T}\left(B^{-1}\right)_{j}=y_{j}
$$

- Excess e_{i} coeff in Row 0 is

$$
-0+\mathbf{c}_{B}^{T} B^{-1}\left(-\mathbf{e}_{j}\right)=-\mathbf{c}_{B}^{T}\left(B^{-1}\right)_{j}=-y_{j}
$$

- Art var a_{i}, coeff in Row 0 (using big M)

$$
M+\mathbf{c}_{B}^{T} B^{-1} \mathbf{e}_{j}=M+\mathbf{c}_{B}^{T}\left(B^{-1}\right)_{j}=M+y_{j}
$$

Original and final tableau for a maximization problem:

$$
\begin{array}{rrrr|rrrrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & \text { rhs } & & x_{1} & x_{2} & s_{1} & s_{2} \\
-2 & 1 & 0 & 0 & 0 & & \text { rhs } \\
\hline 1 & -1 & 1 & 0 & 1 & & 0 & 4 / 3 & 1 / 3 & 10 / 3 \\
\hline 2 & 1 & 0 & 1 & 6 & & 0 & 1 / 3 & 1 / 3 & 7 / 3 \\
\hline 1 & 1 & -2 / 3 & 1 / 3 & 4 / 3
\end{array}
$$

Solution to the primal: $x_{1}=7 / 3, x_{2}=4 / 3$ with $z=10 / 3$.
Solution to the dual: $y_{1}=4 / 3, y_{2}=1 / 3$ with

$$
w=(1)(4 / 3)+(6)(1 / 3)=10 / 3
$$

For practice, let's compute sensitivity on b_{1} (the RHS of first constraint).

Original and final tableau for a maximization problem:

$$
\begin{array}{rrrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & \text { rhs } \\
-2 & 1 & 0 & 0 & 0 \\
\hline 1 & -1 & 1 & 0 & 1 \\
2 & 1 & 0 & 1 & 6
\end{array}
$$

x_{1}	x_{2}	s_{1}	s_{2}	rhs
0	0	$4 / 3$	$1 / 3$	$10 / 3$
1	0	$1 / 3$	$1 / 3$	$7 / 3$
0	1	$-2 / 3$	$1 / 3$	$4 / 3$

The new RHS is $B^{-1} \mathbf{b}+\Delta\left(B^{-1}\right)_{1}$, or:

$$
\left[\begin{array}{l}
7 / 3 \\
4 / 3
\end{array}\right]+\Delta\left[\begin{array}{r}
1 / 3 \\
-2 / 3
\end{array}\right]=\left[\begin{array}{r}
(7+\Delta) / 3 \\
(4-2 \Delta) / 3
\end{array}\right] \geq 0 \Rightarrow-2 \leq \Delta \leq 7
$$

What is the shadow price of the first constraint?

$$
2\left(\frac{7+\Delta}{3}\right)-\left(\frac{4-2 \Delta}{3}\right)=\frac{10}{3}+\frac{4}{3} \Delta
$$

Answer: 4/3 (which is also y_{1})...

What have we done today?

- The Dual Theorem says $\mathbf{y}=\left(\mathbf{c}_{B}^{T} B^{-1}\right)^{T}$
- Shortcuts for computing this by using the final tableau (the entries of Row 0 in the slack variables)
- There seems to be a relationship between the solutions to the dual and the shadow prices.
Lemma 5: (A remark in the book): A basis giving a feasible solution is optimal iff $\mathbf{c}_{B}^{T} B^{-1}$ is feasible for the dual.

