## 6.9: Duality and Sensitivity Analysis

In 6.8, we saw that the optimal solution for the dual gives the shadow prices for the primal. In 6.9 , we see how sensitivity can help us with:

- Changing the objective function coefficient of a NBV.
- Changing the column of a NBV.
- Adding a new "activity" (column).

To illustrate the results, we'll use the following simple primal-dual in normal form:

$$
\begin{aligned}
& \max z=\mathbf{c}^{T} \mathbf{x} \quad \min w=\mathbf{b}^{T} \mathbf{y} \\
& \text { s.t. } A \mathbf{x} \leq \mathbf{b} \quad \Leftrightarrow \quad \text { s.t. } A^{T} \mathbf{y} \geq \mathbf{c} \\
& \mathbf{x} \geq 0 \quad y \geq 0
\end{aligned}
$$

The three items above correspond to changes that we can track in the primal and dual. We'll list them in general here, then we'll look at specific computational examples below.

- If we change $c_{i}$ corresponding to a non-basic variable in the primal, that would change only a right-side value $c_{i}$ in the dual. Therefore, one might imagine that if the corresponding constraint in the dual is satisfied, then the current solution remains optimal (and that is true).
- Similarly, if the column of a non-basic variables changes, that changes the coefficients of a single constraint in the dual. Again, if the constraint remains satisfied, then the current solution remains the same.
- Similarly, adding a new activity corresponds to a new column in the primal, or an extra constraint in the dual. And if the constraint is satisfied in the dual, then the current solution remains optimal for the primal.

And here is a primal problem, with the initial and final tableaux:

$$
\begin{aligned}
\max z= & 3 x_{1}+5 x_{2} \\
\text { st } & 2 x_{1}+3 x_{2} \leq 25 \\
& x_{1}+2 x_{2} \leq 5 \\
& x_{1}, x_{2} \geq 0
\end{aligned} \Rightarrow \begin{array}{rrrr|r}
-3 & -5 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 25 \\
1 & 2 & 0 & 1 & 5
\end{array} \Rightarrow \begin{array}{rrrr|r}
0 & 1 & 0 & 3 & 15 \\
\hline 0 & -1 & 1 & -2 & 15 \\
1 & 2 & 0 & 1 & 5
\end{array}
$$

Here we go!

- Recall how we can find the solution to the dual, given the optimal Row 0. In this case, $\mathbf{y}^{T}=[0,3]$.
- Change $c_{i}$ if $x_{i}$ is non-basic:

Initially, we said that this was simple: Suppose $\hat{c}_{i}$ is the value in Row 0 for the final tableau. Then $\hat{c}_{i}-\Delta>0$ is what we need.

Changing $c_{i}$ in the objective function will change the $i^{\text {th }}$ constraint of the dual.

$$
a_{1 i} y_{1}+a_{2 i} y_{2}+\cdots+a_{m i} y_{m} \geq c_{i}
$$

Now, as long as the optimal value satisfies this requirement, then $\mathbf{y}$ remains feasible in the dual.

Example: Now, if we change the coefficient for $x_{2}$ from 5 to $5+\Delta$, the corresponding change in the dual would be:

$$
3 y_{1}+2 y_{2} \geq c_{2} \quad \Rightarrow \quad 3(0)+2(3) \geq 5+\Delta
$$

Therefore, as long as $\Delta \leq 1$, the current basis remains optimal.

- Change the column corresponding to a non-basic variable.

In this case, the column values of $a_{., i}$ change and the value of $c_{j}$ changes, which corresponds to a change ONLY in the $i^{\text {th }}$ constraint:

$$
a_{1 i} y_{1}+a_{2 i} y_{2}+\cdots+a_{m i} y_{m} \geq c_{i}
$$

If it is satisfied, the current basis remains optimal.

## Example:

Using the previous example again, suppose that column for $x_{2}$, which is $[-5,3,2]^{T}$ changes to $[-2,1,1]$. Is the current basis still optimal?

Solution: This means that the second constraint:

$$
(1)\left(y_{1}\right)+(1)\left(y_{2}\right) \geq 2
$$

is satisfied with $y_{1}=0, y_{2}=3$, and it is. Therefore, the current basis does remain optimal.

## Example 2

We can interpret the column for $x_{2}$ in another way- Suppose the amount of resources $x_{2}$ takes up (the column $[3,2]^{T}$ ) is fixed. What is it costing us to produce? In other words, how much should we sell $x_{2}$ for in order to make it profitable?

Solution: Assuming the current basis is optimal,

$$
3 y_{1}+2 y_{2} \geq c_{2} \quad \Rightarrow \quad 3(0)+2(3)=6
$$

So, it is actually costing us $\$ 6$ each to make $x_{2}$.

- Something similar occurs if we add a new activity- Which means we add a column of variables. And we see that once again, we would simply check that the same constraint is satisfied:

$$
a_{1(n+1)} y_{1}+a_{2(n+1)} y_{2}+\cdots+a_{m(n+1)} y_{m} \geq c_{n+1}
$$

## Example:

Suppose we want to add a third activity whose column is $[-4,2,2]$. Is it worthwhile to bring this in?

Solution: The new constraint would be:

$$
2 y_{1}+2 y_{2} \geq 4
$$

With the current basis optimal, we have: $2(0)+2(3)=6$, which is satisfied. Therefore, it would not be worthwhile to bring this activity in.
Notice that we can use the dual (shadow price) to cost out the value of the resources. In the last example, we saw that, given the resources that were being used, we would have to sell the new thing at at least $\$ 6$, otherwise we would lose money. We saw a similar result for $x_{2}$.

Just so we can see what happens, if we increase the price for $x_{2}$ to 6 , here is the new final tableau:

| $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | $r h s$ |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 3 | 15 |
| 0 | -1 | 1 | -2 | 15 |
| 1 | 2 | 0 | 1 | 5 |
| 0 | 0 | 0 | 3 | 0 |

And we now see multiple optimal solutions.

- For some extra practice, write down the dual.

Solution:

$$
\begin{aligned}
\min w & =25 y_{1}+5 y_{2} \\
\text { s.t. } & 2 y_{1}+y_{2} \geq 3 \\
& 3 y_{1}+2 y_{2} \geq 5 \\
& \mathbf{y} \geq 0
\end{aligned}
$$

Our dual solution is $y_{1}=0, y_{2}=3$, giving $w=15$ for the optimal value, and $e_{1}=0$ and $e_{2}=1$.

