Basic Problem (max)

Write the dual:

Basic Problem (max)

x ₁ -3	<i>x</i> ₂ -5	<i>s</i> 1 0	<i>s</i> ₂ 0	<i>s</i> 3 0	rhs 0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

$$e_2 = -5 + y_2 + 2y_3 = -5$$

- _ 3

x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	rhs
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

This means that we have the following

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	_	e_1	e ₂	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3
0	0	4	12	18	-	-3	-5	0	0	0

The solution to the dual is FEASIBLE, the solution to the PRIMAL is INFEASIBLE.

Note where the zeros appear in each solution...

Change basis $\mathcal{B} = \{s_1, s_2, x_1\}$, and recompute:

x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	rhs			
0	-3	0	0	1	18		0	1
0	-2/3	1	0	-1/3	-2	y =	0	
0	2	0	1	0	12		1	
1	2/3	0	0	1/3	6			-

Solve the primal and the dual:

x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	e_1	e_2	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
6	0	-2	12	0	0	-3	0	0	1

Feasibility?

The primal \mathbf{x} is not feasible, the dual \mathbf{y} is not feasible.

New basis: $B = \{x_1, x_2, s_3\}.$

x_1	<i>x</i> ₂	<i>s</i> ₂	<i>s</i> ₂	s 3	rhs			
0	0	3	5/2	0	42	[3	1
1	0	1	0	0	4	y =	5/2	
0	1	0	1/2	0	6		0	
0	0	-3	-1	1	-6			

The solutions to primal and dual are:

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	e_1	e_2	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
4	6	0	0	-6	0	0	3	5/2	0

Feasibility?

This is dual feasible, but primal infeasible.

Final basis: $\mathcal{B} = \{x_1, x_2, s_1\}$

x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	rhs			
0	0	0	3/2	1	36		[0 ⁻	
1	0	0	-1/3	1/3	2	y =	3/2	
0	1	0	1/2	0	6		1	
0	0	1	1/3	-1/3	2			-

Solutions to the primal, dual are:

x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	(e_1	e ₂	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
2	6	2	0	0		0	0	0	3/2	1

Feasibility?

Both the primal and dual are feasible (so optimal).

Is there an interesting pattern in the solutions?

The solutions to primal and dual are:

<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃
e_1	<i>e</i> ₂	y_1	<i>y</i> ₂	<i>y</i> ₃

The product $e_j x_j = 0$ and $s_j y_j = 0$. Does this makes sense?

If s_j > 0 (slack in constraint j), does it matter if we increase the right hand side of constraint j?

No- The shadow price must be zero.

We have a similar argument for the dual...

Next: Section 6.10, Complementary Slackness