Basic Problem (max)

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	$r h s$
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

Write the dual:

$$
\begin{aligned}
& \min w=4 y_{1}+12 y_{2}+18 y_{3} \\
& \text { For future reference: } \\
& \text { st } \quad y_{1} \quad+3 y_{3} \geq 3 \Rightarrow e_{1}=-3+y_{1}+3 y_{3} \\
& y_{2}+2 y_{3} \geq 5 \quad e_{2}=-5+y_{2}+2 y_{3}
\end{aligned}
$$

Basic Problem (max)

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	$r h s$
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

- Current basis is: $\mathcal{B}=\left\{s_{1}, s_{2}, s_{3}\right\}$
- $\mathbf{c}_{B}^{T}=[0,0,0]$
- Dual: $\mathbf{y}^{T}=\mathbf{c}_{B}^{T} B^{-1}=[0,0,0]$
- And the excess variables:

$$
\begin{aligned}
& e_{1}=-3+y_{1}+3 y_{3}=-3 \\
& e_{2}=-5+y_{2}+2 y_{3}=-5
\end{aligned}
$$

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	$r h s$
-3	-5	0	0	0	0
1	0	1	0	0	4
0	2	0	1	0	12
3	2	0	0	1	18

This means that we have the following

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
0	0	4	12	18

e_{1}	e_{2}	y_{1}	y_{2}	y_{3}
-3	-5	0	0	0

The solution to the dual is FEASIBLE, the solution to the PRIMAL is INFEASIBLE.
Note where the zeros appear in each solution...

Change basis $\mathcal{B}=\left\{s_{1}, s_{2}, x_{1}\right\}$, and recompute:

Solve the primal and the dual:

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
6	0	-2	12	0

Feasibility?
The primal \mathbf{x} is not feasible, the dual \mathbf{y} is not feasible.

New basis: $\mathcal{B}=\left\{x_{1}, x_{2}, s_{3}\right\}$.

$$
\begin{array}{rrrrr|r}
x_{1} & x_{2} & s_{2} & s_{2} & s_{3} & r h s \\
0 & 0 & 3 & 5 / 2 & 0 & 42 \\
\hline 1 & 0 & 1 & 0 & 0 & 4 \\
0 & 1 & 0 & 1 / 2 & 0 & 6 \\
0 & 0 & -3 & -1 & 1 & -6
\end{array} \quad \mathbf{y}=\left[\begin{array}{r}
3 \\
5 / 2 \\
0
\end{array}\right]
$$

The solutions to primal and dual are:

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
4	6	0	0	-6

e_{1}	e_{2}	y_{1}	y_{2}	y_{3}
0	0	3	$5 / 2$	0

Feasibility?
This is dual feasible, but primal infeasible.

Final basis: $\mathcal{B}=\left\{x_{1}, x_{2}, s_{1}\right\}$

$$
\begin{array}{rrrrr|r}
x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & r h s \\
0 & 0 & 0 & 3 / 2 & 1 & 36 \\
\hline 1 & 0 & 0 & -1 / 3 & 1 / 3 & 2 \\
0 & 1 & 0 & 1 / 2 & 0 & 6 \\
0 & 0 & 1 & 1 / 3 & -1 / 3 & 2
\end{array} \quad \mathbf{y}=\left[\begin{array}{r}
\\
0 \\
3 / 2 \\
1
\end{array}\right]
$$

Solutions to the primal, dual are:

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}
2	6	2	0	0

e_{1}	e_{2}	y_{1}	y_{2}	y_{3}
0	0	0	$3 / 2$	1

Feasibility?
Both the primal and dual are feasible (so optimal).

Is there an interesting pattern in the solutions?

The solutions to primal and dual are:

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}

e_{1}	e_{2}	y_{1}	y_{2}	y_{3}

The product $e_{j} x_{j}=0$ and $s_{j} y_{j}=0$.
Does this makes sense?

- If $s_{j}>0$ (slack in constraint j), does it matter if we increase the right hand side of constraint j ?

No- The shadow price must be zero.

- We have a similar argument for the dual...

Next: Section 6.10, Complementary Slackness

