Section 7.2

Quick overview:

- What is a BFS for the transportation problem? How can one be identified in a transportation tableau?
- Methods for computing an initial BFS:
- NW Corner Rule
- Minimum Cost Rule
- Vogel's Method

Homework for 7.2

1. (*) Given below is a transportation tableau. Get an initial basic feasible solution using our three methods: (i) NW Corner Rule, (ii) Minimum Cost, and (iii) Vogel's Approximation Method (VAM). Compare the cost for the three.

	1		2		3		4		
Plant 1		8		6		10		9	45
Plant 2		9		12		13		7	60
Plant 3		14		9		16		7	50
Demand	45		30		40		40		155

2. Repeat the same techniques for the transportation tableau below:

	A		B		C		
Plant 1		5		4		3	100
Plant 2		8		4		5	300
Plant 3		9		7		5	300
Demand	300		200		200		700

3. (*) Shown below is a series of transportation tableaux. An asterisk in the box means that there is a number in that box.
In each tableau, identify the loop.
(a)

$*$			$*$
		$*$	$*$
$*$	$*$		$*$

(b)

$*$			$*$
$*$	$*$		$*$
		$*$	

(c)
(d)

$*$	$*$		$*$
		$*$	$*$
	$*$	$*$	

(e)

$*$	$*$		
$*$		$*$	$*$
	$*$	$*$	

$*$	$*$		
$*$		$*$	$*$
	$*$		$*$

4. For the following 3×4 array, we have placed 6 numbers (indicated by the asterisks). You should note that no loop currently exists. Show that, no matter where one may place a 7 th number (in the 6 remaining positions), you will create a loop. You might verify by showing the loop for the 6 possibilities.

		$*$	$*$
$*$	$*$		
$*$		$*$	

5. For the transportation problem below, write the dual, using u_{i} for the supply equations and v_{j} for the demand equations (recall that the transportation problem is actually the dual, and the dual of that is the primal).

	A		B		C		
Plant 1		5		4		3	150
Plant 2		8		4		5	350
Demand	200		100		200		300

