Homework, Section 7.3

1. Given transportation tableau below, write out the original linear program and its dual (be sure to use u, v notation for the dual).

		2		3		5		6	
									5
		2		1		3		5	
									10
		3		8		4		6	
									15
Demand	12		8		4		6		30

2. Given the BFS below, compute the solution to the dual and determine if the BFS gives the optimal solution. If not, say which cell should come into the basis.

	$v_1 =$		$v_2 =$		$v_{3} =$		$v_4 =$		Supply
		2		3		5		6	
$u_1 =$	5								5
		2		1		3		5	
$u_2 =$	7		3						10
		3		8		4		6	
$u_3 =$			5		4		6		15
Demand	12		8		4		6		30

3. Continuing from the previous answer, update the tableau and check if it is optimal:

	$v_1 =$	$v_2 =$	$v_3 =$	$v_4 =$	Supply
	2	3	5	6	
$u_1 =$					5
	2	1	3	5	
$u_2 =$					10
	3	8	4	6	
$u_3 =$					15
Demand	12	8	4	6	30

4. In the previous problem, at least one cell should have (0), which means that entry could be used in the BFS, which would give an alternate BFS- Find an alternate BFS to the one you found above.

	$v_1 =$		$v_2 =$		$v_{3} =$		Supply
		2		2		3	
$u_1 =$							10
		4		1		2	
$u_2 =$							15
		1		2		1	
$u_3 =$							40
Demand	20		15		30		65

5. Here is a transportation tableau. Use any method to get a BFS, then use MODI to find the optimal solution.

6. If we have 4 warehouses and 5 customers, (i) How many decision variables are in the original linear program for the transporation problem? (ii) How many variables need to be determined to make up a basic feasible solution? Are there any other restrictions on those variables (to make up a BFS)?