Previously...

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

We can formulate the transportation problem as an LP, and we can write its dual using u_{i}, v_{j}.

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

We can formulate the transportation problem as an LP, and we can write its dual using u_{i}, v_{j}.

Goal today:

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

We can formulate the transportation problem as an LP, and we can write its dual using u_{i}, v_{j}.

Goal today: Determine if a given BFS is optimal.

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

We can formulate the transportation problem as an LP, and we can write its dual using u_{i}, v_{j}.

Goal today: Determine if a given BFS is optimal. If it is not, find a better BFS.

Previously...

- We can determine a BFS ($m+n-1$ lin indep vars)
- We have three ways of determining an initial BFS:
- NW Corner Rule
- Minimum Cost Method
- Vogel's Approx Method (VAM)

We can formulate the transportation problem as an LP, and we can write its dual using u_{i}, v_{j}.

Goal today: Determine if a given BFS is optimal. If it is not, find a better BFS. (MODI- "Modified Distribution Method", or u-v method).

Example from Video 1 of 7.2:

Example from Video 1 of 7.2: From the tableau, write down the LP and its dual.

Example from Video 1 of 7.2: From the tableau, write down the LP and its dual.

Original LP:

$$
\min w=3 y_{11}+7 y_{12}+6 y_{13}+2 y_{21}+4 y_{22}+3 y_{23}
$$

Original LP:

$$
\begin{array}{rrrrrrrl}
\min w= & 3 y_{11} & +7 y_{12} & +6 y_{13} & +2 y_{21} & +4 y_{22} & +3 y_{23} & \\
\text { st } & y_{11} & +y_{12} & +y_{13} & & & & \\
& & & & y_{21} & +y_{22} & +y_{23} & =2 \\
\hline
\end{array}
$$

Original LP:

$\min w=$	$3 y_{11}$	$+7 y_{12}$	$+6 y_{13}$	$+2 y_{21}$	$+4 y_{22}$	$+3 y_{23}$	
st	y_{11}	$+y_{12}$	$+y_{13}$				$=5$
				y_{21}	$+y_{22}$	$+y_{23}$	$=2$
	y_{11}			$+y_{21}$			$=2$
		y_{12}			$+y_{22}$		$=3$
			y_{13}			$+y_{23}$	$=2$

Original LP:

$\min w=$	$3 y_{11}$	$+7 y_{12}$	$+6 y_{13}$	$+2 y_{21}$	$+4 y_{22}$	$+3 y_{23}$	
st	y_{11}	$+y_{12}$	$+y_{13}$				$=5$
				y_{21}	$+y_{22}$	$+y_{23}$	$=2$
	y_{11}			$+y_{21}$			$=2$
		y_{12}			$+y_{22}$		$=3$
			y_{13}			$+y_{23}$	$=2$

Let u_{i} be dual var for supply, v_{j} be dual var for demand.

Original LP:

$\min w=$	$3 y_{11}$	$+7 y_{12}$	$+6 y_{13}$	$+2 y_{21}$	$+4 y_{22}$	$+3 y_{23}$	
st	y_{11}	$+y_{12}$	$+y_{13}$				$=5$
				y_{21}	$+y_{22}$	$+y_{23}$	$=2$
	y_{11}			$+y_{21}$			$=2$
		y_{12}			$+y_{22}$		$=3$
			y_{13}			$+y_{23}$	$=2$

Let u_{i} be dual var for supply, v_{j} be dual var for demand.

$$
\max z=5 u_{1}+2 u_{2}+2 v_{1}+3 v_{2}+2 v_{3}
$$

Original LP:

$\min w=$	$3 y_{11}$	$+7 y_{12}$	$+6 y_{13}$	$+2 y_{21}$	$+4 y_{22}$	$+3 y_{23}$	
st	y_{11}	$+y_{12}$	$+y_{13}$				$=5$
				y_{21}	$+y_{22}$	$+y_{23}$	$=2$
	y_{11}			$+y_{21}$			$=2$
		y_{12}			$+y_{22}$		$=3$
			y_{13}			$+y_{23}$	$=2$

Let u_{i} be dual var for supply, v_{j} be dual var for demand.

$$
\max z=5 u_{1}+2 u_{2}+2 v_{1}+3 v_{2}+2 v_{3}
$$

such that:

Original LP:

$\min w=$	$3 y_{11}$	$+7 y_{12}$	$+6 y_{13}$	$+2 y_{21}$	$+4 y_{22}$	$+3 y_{23}$	
st	y_{11}	$+y_{12}$	$+y_{13}$				$=5$
				y_{21}	$+y_{22}$	$+y_{23}$	$=2$
	y_{11}			$+y_{21}$			$=2$
		y_{12}			$+y_{22}$		$=3$
			y_{13}			$+y_{23}$	$=2$

Let u_{i} be dual var for supply, v_{j} be dual var for demand.

$$
\max z=5 u_{1}+2 u_{2}+2 v_{1}+3 v_{2}+2 v_{3}
$$

such that:

u_{1}	$+v_{1}$			≤ 3	$u_{2}+v_{1}$		≤ 2	
u_{1}		$+v_{2}$		≤ 7				
u_{1}			$+v_{3}$	≤ 6		$+v_{2}$		≤ 4
u_{1}			u_{2}			$+v_{3}$	≤ 3	

where u_{i}, v_{j} are URS.

- By Complementary Slackness, if BV $y_{i j}$ is >0,
- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero
- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV,

- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV, $u_{i}+v_{j} \leq c_{i j}$.

- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV, $u_{i}+v_{j} \leq c_{i j}$.

- We have an extra variable, set $u_{1}=0$ (This is a random choice).
- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV, $u_{i}+v_{j} \leq c_{i j}$.

- We have an extra variable, set $u_{1}=0$ (This is a random choice).
- Solve for all other u_{i}, v_{j} belonging to BV s.
- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV, $u_{i}+v_{j} \leq c_{i j}$.

- We have an extra variable, set $u_{1}=0$ (This is a random choice).
- Solve for all other u_{i}, v_{j} belonging to BV s.
- For NBV's, compute $c_{i j}-\left(u_{i}+v_{j}\right)$ ("Row 0 " in the LP)
- By Complementary Slackness, if BV $y_{i j}$ is >0, the corresponding slack in the dual constraint is zero therefore:

$$
u_{i}+v_{j}=c_{i j}
$$

For the NBV, $u_{i}+v_{j} \leq c_{i j}$.

- We have an extra variable, set $u_{1}=0$ (This is a random choice).
- Solve for all other u_{i}, v_{j} belonging to BV s.
- For NBV's, compute $c_{i j}-\left(u_{i}+v_{j}\right)$ ("Row 0 " in the LP)
- If these are all non-negative, the current solution is optimal.

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply
		8		6		10		9	35
$u_{1}=$	35								
		9		12		13		7	50
$u_{2}=$	10		20		20				
		14		9		16		5	
$u_{3}=$					10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply
		8		6		10		9	35
$u_{1}=0$	35								
		9		12		13		7	50
$u_{2}=$	10		20		20				
		14		9		16		5	
$u_{3}=$					10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=$	10		20		20			7	50		
		14				9		16		5	
$u_{3}=$					10		30		40		
Demand	45		20		30		30		125		

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=1$	10		20		20			7	50		
		14				9		16		5	
$u_{3}=$					10		30		40		
Demand	45		20		30		30		125		

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=$		$v_{4}=$		Supply
		8		6		10		9	
$u_{1}=0$	35								35
		9		12		13		7	50
$u_{2}=1$	10		20		20				
		14		9		16		5	
$u_{3}=$					10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$\mathrm{v}_{2}=11$		$\mathrm{V}_{3}=12$		$v_{4}=$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=1$	10		20		20			7	50		
		14				9		16		5	
$u_{3}=$					10		30		40		
Demand	45		20		30		30		125		

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=1$	10		20		20			7	50		
		14				9		16		5	
$u_{3}=4$					10		30		40		
Demand	45		20		30		30		125		

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	35								35
$u_{2}=1$		9		12		13		7	50
	10		20		20				
		14		9		16		5	
$u_{3}=4$					10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=1$	10		20		20			7	50		
		14				9	10	16	30	5	40
$u_{3}=4$	(2)										
Demand	45		20		30		30		125		

$$
c_{i j}-\left(u_{i}+v_{j}\right)=14-(8+4)=14-12=2
$$

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	35		(-5)						35
		9		12		13		7	
$u_{2}=1$	10		20		20				50
		14		9		16		5	
$u_{3}=4$	(2)				10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	35		(-5)						35
		9		12		13		7	
$u_{2}=1$	10		20		20				50
		14		9		16		5	
$u_{3}=4$	(2)		(-6)		10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$\mathrm{v}_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	35		(-5)		(-2)				35
		9		12		13		7	
$u_{2}=1$	10		20		20				50
		14		9		16		5	
$u_{3}=4$	(2)		(-6)		10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	35		(-5)		(-2)		(8)		35
		9		12		13	(5) ${ }^{7}$		
$u_{2}=1$	10		20		20				50
		14		9		16		5	
$u_{3}=4$	(2)		(-6)		10		30		40
Demand	45		20		30		30		125

Current Value of $z=1180$.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply		
	35 8			6		10		9			
$u_{1}=0$									35		
$u_{2}=1$	10		$20-\theta$		$20+\theta$			7			
							50				
		14				9		16		5	
$u_{3}=4$			θ		$10-\theta$		30		40		
Demand	45		20		30		30		125		

Increase θ by as much as possible.

$$
\begin{array}{c|l}
20-\theta & 20+\theta \\
\hline \theta & 10-\theta
\end{array} \rightarrow \quad \begin{array}{c|c}
10 & 30 \\
\hline 10 &
\end{array}
$$

The cell that becomes zero is removed from the set of basic variables.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply		
		8		6		10		9	35		
$u_{1}=0$	35										
$u_{2}=1$	10		10		30			7	50		
		14				9		16		5	
$u_{3}=4$			10				30		40		
Demand	45		20		30		30		125		

New Value of $z=1120$

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	35
$u_{1}=0$	35								
$u_{2}=1$		9		12		13		7	50
	10		10		30				
		14		9		16		5	
$u_{3}=4$			10				30		40
Demand	45		20		30		30		125

Recompute u 's where necessary.

Recompute u 's where necessary. Note that v_{2} doesn't change...

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	35
$u_{1}=0$	35								
$u_{2}=1$		9		12		13		7	50
	10		10		30				
		14		9		16		5	
$u_{3}=4$			10				30		40
Demand	45		20		30		30		125

Recompute $u^{\prime} s$ where necessary. Note that v_{2} doesn't change...
Compute u_{3}, then also v_{4}.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=7$		Supply		
$u_{1}=0$		8		6		10		9	35		
	35										
$u_{2}=1$	$1{ }_{10}$		$10 \begin{array}{r}12 \\ \end{array}$		$3{ }_{30}$			7	50		
		14			$10 \lcm{9}$			16	30		
$u_{3}=-2$							40				
Demand	45		20		30		30		125		

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=7$		Supply
		8		6		10		9	
$u_{1}=0$	35								35
$u_{2}=1$		9		12		13		7	
	10		10		30				50
		14		9		16		5	
$u_{3}=-2$			10				30		40
Demand	45		20		30		30		125

Recompute NBVs...

	$v_{1}=8$		$\mathrm{v}_{2}=11$		$v_{3}=12$		$v_{4}=7$		Supply		
	\% 8		(-5)		$(-2) \xrightarrow{10}$		(2) 9				
$u_{1}=0$			35								
		9				12		13	(-1) ${ }^{7}$		
$u_{2}=1$	10		10		30		50				
		14		9		16		5			
$u_{3}=-2$	(8)		10		(6)		30		40		
Demand	45		20		30		30		125		

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply

We bring y_{12} into the set of BVs , and by using the loop, we'll remove y_{22} from the set.

	$v_{1}=8$		$v_{2}=11$		$v_{3}=12$		$v_{4}=1$		Supply
		8		6		10		9	
$u_{1}=0$	25		10						35
		9		12		13		7	
$u_{2}=1$	20				30				50
		14		9		16		5	
$u_{3}=4$			10				30		40
Demand	45		20		30		30		125

New value of $z=1070$. Is it optimal?

	$v_{1}=8$		$\mathrm{v}_{2}=$? ?		$v_{3}=12$		$v_{4}=$? ?		Supply
		8		6		10		9	
$u_{1}=0$	25		10						35
		9		12		13		7	
$u_{2}=1$	20				30				50
		14		9		16		5	
$u_{3}=$??			10				30		40
Demand	45		20		30		30		125

Recalculating the dual...

	$v_{1}=8$		$\mathrm{v}_{2}=6$		$v_{3}=12$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$	25		10						35
		9		12		13		7	
$u_{2}=1$	20				30				50
		14		9		16		5	
$u_{3}=3$			10				30		40
Demand	45		20		30		30		125

	$v_{1}=8$		$v_{2}=6$		$v_{3}=12$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$	25		10						35
		9		12		13		7	
$u_{2}=1$	20				30				50
		14		9		16		5	
$u_{3}=3$			10				30		40
Demand	45		20		30		30		125

Next: Recalculate NBVs ("Row 0"):

	$\mathrm{v}_{1}=8$		$v_{2}=6$		$\mathrm{v}_{3}=12$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$	25		10		(-2)		(7)		35
		9		12		13		7	
$u_{2}=1$	20		(5)		30		(4)		50
		14		9		16		5	
$u_{3}=3$	(3)		10		(1)		30		40
Demand	45		20		30		30		125

	$v_{1}=8$		$v_{2}=6$		$v_{3}=12$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$	25		10		(-2)		(7)		35
		9		12		13		7	
$u_{2}=1$	20		(5)		30		(4)		50
		14		9		16		5	
$u_{3}=3$	(3)		10		(1)		30		40
Demand	45		20		30		30		125

Next: Bring in y_{13} and form a loop.

	$v_{1}=8$		$\mathrm{v}_{2}=6$		$v_{3}=12$		$v_{4}=2$		Supply
		8	10			10		9	35
$u_{1}=0$	$25-\theta$				θ				
$u_{2}=1$		9		12	$30-\theta$			7	50
	$20+\theta$								
		14	10			16	30		40
$u_{3}=3$									
Demand	45		20		30		30		125

Next: Take $\theta=$

Next: Take $\theta=25$ and reset dual variables.

New value of $z=1020$.

	$v_{1}=8$		$v_{2}=6$		$v_{3}=12$		$v_{4}=2$		Supply		
		8	10		25			9	35		
$u_{1}=0$											
	45			12			5			7	50
$u_{2}=1$											
		14	10			16	30				
$u_{3}=3$									40		
Demand	45		20		30		30		125		

New value of $z=1020$.

Reset $u, v \ldots$

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply		
		8	10		25			9	35		
$u_{1}=0$											
	45			12			$5{ }_{5}$			7	50
$u_{2}=3$											
		14	10			16	$3{ }_{30}$				
$u_{3}=3$									40		
Demand	45		20		30		30		125		

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$			10		25				35
		9		12		13		7	
$u_{2}=3$	45				5				50
		14		9		16		5	
$u_{3}=3$			10				30		40
Demand	45		20		30		30		125

Next: Recompute the Row 0 values in the NBV cells.

	$v_{1}=6$		$v_{2}=6$		$v_{3}=10$		$v_{4}=2$		Supply
		8		6		10		9	
$u_{1}=0$	(2)		10		25		(7)		35
		9		12		13		7	
$u_{2}=3$	45		(3)		5		(2)		50
		14		9		16		5	
$u_{3}=3$	(5)		10		(3)		30		40
Demand	45		20		30		30		125

Optimal.

In Class Example

Given the following tableau with BFS, compute the solution to the dual and determine if it is optimal. If not, say which cell should come into the basis.

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply

In Class Example

In Class Example

	$v_{1}=2$		$\mathrm{v}_{2}=1$		$v_{3}=-3$		$v_{4}=-1$		Supply
		2		3		5		6	
$u_{1}=0$	5		(2)		(8)		(7)		5
		2		1		3		5	
$u_{2}=0$	7		3		(6)		(6)		10
		3		8		4		6	
$u_{3}=7$	(-6)		5		4		6		15
Demand	12		8		4		6		30

Bring in the $(3,1)$ cell.

$$
\begin{array}{c|l}
7-\theta & 3+\theta \\
\hline \theta & 5-\theta
\end{array} \rightarrow \quad \begin{array}{l|l}
2 & 8 \\
\hline 5 &
\end{array}
$$

Now enter these variables, re-compute the dual and the Row 0 values.

| | $v_{1}=2$ | | $v_{2}=1$ | | $v_{3}=3$ | | $v_{4}=5$ | | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

	$v_{1}=2$		$v_{2}=1$		$v_{3}=3$		$v_{4}=5$		Supply
		2		3		5		6	
$u_{1}=0$	5		(2)		(2)		(2)		5
		2		1		3		5	
$u_{2}=0$	2		8		(0)		(0)		10
		3		8		4		6	
$u_{3}=1$	5		(6)		4		6		15
Demand	12		8		4		6		30

This is optimal.

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
		4		6		8		8	40		
$u_{1}=$	20		20								
$u_{2}=$		6	10 8		50			7	60		
		5		7				6		8	
$u_{3}=$							50		50		
Demand	20		30		50		50		150		

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
		4		6		8		8	40		
$u_{1}=$	20		20								
$u_{2}=$		6	10		50			7	60		
		5		7				6		8	
$u_{3}=$							50		50		
Demand	20		30		50		50		150		

We cannot solve for the dual...

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
		4		6		8		8	40		
$u_{1}=$	20		20								
$u_{2}=$		6	10 8		50			7	60		
		5		7				6		8	
$u_{3}=$							50		50		
Demand	20		30		50		50		150		

We cannot solve for the dual...
We must decide on which variable will be basic. (Put ϵ in that cell)

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
		4		6		8		8	40		
$u_{1}=$	20		20								
$u_{2}=$		6	10		50			7	60		
		5		7				6		8	
$u_{3}=$							50		50		
Demand	20		30		50		50		150		

We cannot solve for the dual...
We must decide on which variable will be basic. (Put ϵ in that cell) We do not want a loop!

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply
		4		6		8		8	40
$u_{1}=$	20		20		No				
		6		8		6		7	60
$u_{2}=$	No		10		50				
		5		7		6		8	
$u_{3}=$							50		50
Demand	20		30		50		50		150

Degeneracy

	$v_{1}=$		$v_{2}=$		$v_{3}=$		$v_{4}=$		Supply		
		4		6		8		8	40		
$u_{1}=$	20		20								
$u_{2}=$		6	10 8		50			7	60		
		5		7				6		8	
$u_{3}=$					ϵ		50		50		
Demand	20		30		50		50		150		

Degeneracy

Now we can fill in the dual:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=6$		Supply		
		4		6		8		8			
$u_{1}=0$	20		20						40		
$u_{2}=2$		6	10		5			7	60		
		5		7				6		8	
$u_{3}=2$					ϵ		50		50		
Demand	20		30		50		50		150		

Degeneracy

Check for optimality:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=6$		Supply
		4		6		8		8	
$u_{1}=0$	20		20		(4)		(2)		40
		6		8		6		7	
$u_{2}=2$	(0)		10		50		(-1)		60
		5		7		6		8	
$u_{3}=2$	(-1)		(-1)		ϵ		50		50
Demand	20		30		50		50		150

Degeneracy

We'll choose to bring in y_{32}, which gives us the loop:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=6$		Supply
		4		6		8		8	
$u_{1}=0$	20		20		(4)		(2)		40
		6		8		6	(-1) ${ }^{7}$		
$u_{2}=2$	(0)		10		50				60
		5		7		6		8	
$u_{3}=2$	(-1)		(-1)		ϵ		50		50
Demand	20		30		50		50		150

Degeneracy

$$
\begin{array}{r|r}
10-\theta & 50+\theta \\
\hline \theta & \epsilon-\theta
\end{array} \Rightarrow \quad \begin{array}{r|r}
10 & 50 \\
\hline \epsilon &
\end{array}
$$

Degeneracy

$$
\begin{array}{r|r}
10-\theta & 50+\theta \\
\hline \theta & \epsilon-\theta
\end{array} \Rightarrow \quad \begin{array}{r|r}
10 & 50 \\
\hline \epsilon &
\end{array}
$$

This is a common occurrence, and the reason we use ϵ and not 0 .

Degeneracy

$$
\begin{array}{r|r}
10-\theta & 50+\theta \\
\hline \theta & \epsilon-\theta
\end{array} \Rightarrow \quad \begin{array}{r|r}
10 & 50 \\
\hline \epsilon &
\end{array}
$$

This is a common occurrence, and the reason we use ϵ and not 0 . This could change our computation of the dual...

Degeneracy, continued

Here are our new values for the dual...

Degeneracy, continued

Here are our new values for the dual...

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=7$		Supply
		4		6		8		8	
$u_{1}=0$	20		20		(4)		(1)		40
		6		8		6		7	
$u_{2}=2$	(0)		10		50		(-2)		60
		5		7		6		8	
$u_{3}=1$	(0)		ϵ		(1)		50		50
Demand	20		30		50		50		150

Degeneracy, continued

Bring y_{24} into the basis, and we have the loop below:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=7$		Supply
		4		6		8		8	
$u_{1}=0$	20		20						40
$u_{2}=2$		6		8	50			7	
			$10-\theta$				θ		60
		5		7		6	$50-\theta$		
$u_{3}=1$			$\epsilon+\theta$						50
Demand	20		30		50		50		150

Degeneracy, continued

Bring y_{24} into the basis, and we have the loop below:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=4$		$v_{4}=7$		Supply		
	20		20			8		8			
$u_{1}=0$							40				
$u_{2}=2$		6					50		$\theta \quad \begin{aligned} & 7 \\ & \\ & \\ & \end{aligned}$		
			60								
		5	$\epsilon+\theta$			6	50- $\begin{array}{r}\text { 8 } \\ \\ \hline\end{array}$				
$u_{3}=1$									50		
Demand	20		30		50		50		150		

With $\theta=10$, we will remove the degeneracy!

Continuing...

Here is the new tableau with the new dual values computed. We only show negative values of $c_{i j}-\left(u_{i}+v_{j}\right)$.

	$v_{1}=4$		$v_{2}=6$		$v_{3}=6$		$v_{4}=7$		Supply
		4		6		8		8	
$u_{1}=0$	20		20						40
$u_{2}=0$		6		8		6		7	
					50		10		60
		5		7		6		8	
$u_{3}=1$			10		(-1)		40		50
Demand	20		30		50		50		150

Continuing...

Bring in y_{33}, and we have an optimal tableau:

	$v_{1}=4$		$v_{2}=6$		$v_{3}=5$		$v_{4}=6$		Supply		
		4		6		8		8			
$u_{1}=0$	20		20						40		
$u_{2}=1$		6		8	10		50				
							60				
		5		7		6				8	
$u_{3}=1$			10		40				50		
Demand	20		30		50		50		150		

Next up: Sensitivity Analysis

