## Sensitivity Analysis

This is Example 2, Section 3.2: We're buying advertising time for our two target demos: "HIW" and "HIM" (High Income Women and High Income Men).

Let $x_{1}, x_{2}$ be the number of ads purchased during a comedy show, and a football game respectively. Comedy ads are $\$ 50,000$ and football ads are $\$ 100,000$. For the target demos, we want to solve the following LP:

$$
\begin{aligned}
\min z= & 50 x_{1}+100 x_{2} \\
\text { st } & 7 x_{1}+2 x_{2} \geq 28 \\
& 2 x_{1}+12 x_{2} \geq 24 \quad \text { (HIW) } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

where the unit of money is $\$ 1,000$ and the unit of people is in millions.
Solving this graphically:


In this case, we see that the point $E=(3.6,1.4)$ is the unique optimal solution. Now we'll look at how sensitive the solution is to changes in the parameters:

1. Find the range of values of the cost of $x_{1}$ for which the current basis remains feasible (the basis is the set of basic variables).
SOLUTION: Slope of the isocost line is between the other 2 slopes.

$$
k=c_{1} x_{1}+100 x_{2} \quad \Rightarrow \quad x_{2}=-\frac{c_{1}}{100} x_{1}+\frac{k}{100}
$$

To have the current basis remain the (unique) optimal solution, we must have:

$$
-\frac{7}{2}<-\frac{c_{1}}{100}<\frac{-1}{6} \quad \Rightarrow \quad \frac{50}{3}<c_{1}<350
$$

If we allowed for multiple optimal solutions, we could put equalities there.
2. (For class) Find the range of values of the cost of a football ad for which the current basis remains optimal.
SOLUTION: Again, slope of the isocost line is between the others. In this case,

$$
-\frac{7}{2}<-\frac{50}{c_{2}}<-\frac{1}{6} \quad \Rightarrow \quad \frac{100}{7}<c_{2}<300
$$

3. Find the range of exposures of required HIW for which the current basis $\left(x_{1}, x_{2}\right)$ remains optimal.
SOLUTION: Look at $7 x_{1}+2 x_{2}=b_{1}$.

- In changing $b_{1}$, the slope stays the same; the line drops (in a parallel way) or lifts.
- Having the same basis means that the optimal value will be attained at the intersection of HIW and HIM.
- As $b_{1}$ decreases, the point $\mathbf{E}$ slides toward point $\mathbf{D}(0,2)$. This occurs when:

$$
b_{1}=7 x_{1}+2 x_{2}=7(0)+2(2)=4
$$

Therefore, $b_{1}>4$.

- Similarly, as $b_{1}$ increases, $\mathbf{E}$ slides toward $\mathbf{C}(12,0)$, and they intersect when

$$
b_{1}=7(12)+2(0)=84
$$

Therefore, the current basis remains optimal if

$$
4<b_{1}<84
$$

Sometimes it is more convenient to see these results in terms of the change to the current value $b_{1}=28+\Delta$ :

$$
4<28+\Delta<84 \quad \Rightarrow \quad-24<\Delta<56
$$

We can also determine the new point of intersection if we want to move the constraint by $\Delta$ -

We solve for the point of intersection of the system below using Cramer's Rule. Using the current basis, $x_{1}$ and $x_{2}$ are basic and $e_{1}, e_{2}$ are set to zero.

$$
\begin{gathered}
\begin{aligned}
7 x_{1}+2 x_{2} & =28+\Delta \\
2 x_{1}+12 x_{2} & =24
\end{aligned} \\
x_{1}=\frac{\left|\begin{array}{cc}
28+\Delta & 2 \\
24 & 12
\end{array}\right|}{\left|\begin{array}{rr}
7 & 2 \\
2 & 12
\end{array}\right|}=\frac{336+12 \Delta-48}{7 \cdot 12-4}=\frac{18}{5}+\frac{3}{20} \Delta=3.6+0.15 \Delta
\end{gathered}
$$

And

$$
x_{2}=\frac{\left|\begin{array}{rc}
7 & 28+\Delta \\
2 & 24
\end{array}\right|}{\left|\begin{array}{rr}
7 & 2 \\
2 & 12
\end{array}\right|}=\frac{168-56-2 \Delta}{7 \cdot 12-4}=\frac{7}{5}-\frac{1}{40} \Delta=1.4-0.025 \Delta
$$

4. Repeat, but find the sensitivity to the HIM constraint.

SOLUTION: As before, $2 x_{1}+12 x_{2}=b_{2}$ (locate the bottom line on the graph). Therefore,

- As $b_{2}$ increases, point $\mathbf{E}$ slides toward $\mathbf{B}(0,14)$.

$$
2(0)+12(14)=b_{2} \quad \Rightarrow \quad b_{2}=168
$$

- As $b_{2}$ decreases, point $\mathbf{E}$ slides toward $\mathbf{A}(4,0)$.

$$
2(4)+12(0)=b_{2} \quad \Rightarrow \quad b_{2}=8
$$

Therefore,

$$
8 \leq b_{2} \leq 168
$$

So, in terms of $\Delta$, we could compute the range directly:

$$
8 \leq 24+\Delta \leq 168 \quad \Rightarrow \quad-16 \leq \Delta \leq 144
$$

And for the point of intersection between the constraints (note the basis)

$$
\begin{aligned}
& 7 x_{1}+2 x_{2}=28 \\
& 2 x_{1}+12 x_{2}=24+\Delta \\
& x_{1}=\frac{\left|\begin{array}{cc}
28 & 2 \\
24+\Delta & 12
\end{array}\right|}{\left|\begin{array}{rr}
7 & 2 \\
2 & 12
\end{array}\right|}=\frac{336-48-2 \Delta}{80}=\frac{18}{5}-\frac{1}{40} \Delta=3.6-0.025 \Delta
\end{aligned}
$$

And

$$
x_{2}=\frac{\left|\begin{array}{cc}
7 & 28 \\
2 & 24+\Delta
\end{array}\right|}{\left|\begin{array}{rr}
7 & 2 \\
2 & 12
\end{array}\right|}=\frac{168-56+7 \Delta}{80}=\frac{7}{5}+\frac{7}{80} \Delta=1.4+0.0875 \Delta
$$

## Shadow Prices, Part I

The shadow price (of a constraint) is the amount by which the value of the objective function is improved (increased in a maximum, decreased in a minimum) when the RHS of the constraint is increased by 1 unit. This is done under the assumption that the current basis is unchanged.

## Continuing with our Example

Find the shadow price of each constraint.
SOLUTION:

- For $H I W$, if the RHS is $28+\Delta$, then we solve the system below, which we already did:

$$
\begin{aligned}
7 x_{1}+2 x_{2} & =28+\Delta \\
2 x_{1}+12 x_{2} & =24
\end{aligned} \quad \Rightarrow \quad x_{1}=3.6+0.15 \Delta, x_{2}=1.4-0.025 \Delta
$$

Substitute these into the objective function:

$$
(\min ) z=50(3.6+0.15 \Delta)+100(1.4-0.025 \Delta)=320+5 \Delta
$$

Increasing the RHS of constraint 1 will represent a worse value of $z$ by 5 units. That means the shadow price is -5 (because the minimum is worse).

- Similarly for HIM, if the RHS is $24+\Delta$, then we solve the system below:

$$
\begin{aligned}
7 x_{1}+2 x_{2} & =28 \\
2 x_{1}+12 x_{2} & =24+\Delta
\end{aligned} \quad \Rightarrow \quad x_{1}=3.6-0.025 \Delta, x_{2}=1.4+0.0875 \Delta
$$

Substitute these into the objective function:

$$
(\min ) z=50(3.6-0.025 \Delta)+100(1.4+0.0875 \Delta)=320+7.5 \Delta
$$

Increasing the RHS of constraint 2 by 1 unit will represent a worse value of $z$ by 7.5 units. That means the shadow price is -7.5 .

## Continuing the example...

If 26 HIW exposures are required (and other parameters remain the same), determine the new solution and the new value of $z$.

SOLUTION: We've already done the computations- Just set $\Delta=-2$ (which is in the allowable range). Then the optimal solution changes slightly:

$$
x_{1}=3.6+0.15(-2)=3.30 \quad x_{2}=1.4-0.025(-2)=1.45
$$

and $z=320+5(-2)=310$ (double-check: $50(3.3)+100(1.45)=310)$

## LINGO

```
min=50*x1+100*x2;
7*x1+2*x2>=28;
2*x1+12*x2>=24;
```

The solution report gives us the shadow prices (dual prices):

| Variable | Value | Reduced Cost |
| ---: | :---: | ---: |
| X1 | 3.600000 | 0.000000 |
| X2 | 1.400000 | 0.000000 |
| Row | Slack or Surplus | Dual Price |
| 1 | 320.0000 | -1.000000 |
| 2 | 0.000000 | -5.000000 |
| 3 | 0.000000 | -7.500000 |

And in the range report:
RANGES IN WHICH THE BASIS IS UNCHANGED:

|  |  | OBJ COEFFICIENT RANGES |  |
| ---: | :---: | :---: | :--- |
| VARIABLE | CURRENT | ALLOWABLE | ALLOWABLE |
|  | COEF | INCREASE | DECREASE |
| X1 | 50.000000 | 300.000000 | 33.333332 |
| X2 | 100.000000 | 200.000000 | 85.714287 |
|  |  |  |  |
|  |  | RIGHTHAND SIDE RANGES |  |
| ROW | CURRENT | ALLOWABLE | ALLOWABLE |
|  | RHS | INCREASE | DECREASE |
| 2 | 28.00000 | 56.000000 | 23.999998 |
| 3 | 24.000000 | 144.000000 | 16.000000 |

