Extra Worked Example: Full Sensitivity Analysis

A factory can produce 4 products. Each product must be processed in each of two workshops. The processing times and profit margins for each of the four products is shown.

	1	2	3	4
Workshop 1	3	4	8	6
Workshop 2	6	2	5	8
Profit	4	6	10	9

If we have 400 hours of labor available in each workshop, the following LP can be used:

$$
\begin{array}{lllll}
\max \quad z= & 4 x_{1} & +6 x_{2} & +10 x_{3} & +9 x_{4} \\
\text { st } & 3 x_{1} & +4 x_{2} & +8 x_{3} & +6 x_{4}
\end{array} \leq 400 \text { Labor 1 } 120 \text { Labor 2 }
$$

The initial and final tableaux:

x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}		x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	
-4	-6	-10	-9	0	0	0	1/2	0	2	0	$3 / 2$	0	600
3	4	8	6	1	0	400	3/4	1	2	$3 / 2$	1/4	0	100
6	2	5	8	0	1	400	9/2	0	1	5	$-1 / 2$	1	200

Sensitivity Analysis

The basic variables are (in order): $\mathcal{B}=\left\{x_{2}, s_{2}\right\}$ so that the matrices B and B^{-1} can be read directly from the initial and final tableaux respectively.

$$
B=\left[\begin{array}{ll}
4 & 0 \\
2 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{rr}
1 / 4 & 0 \\
-1 / 2 & 1
\end{array}\right]
$$

Further, the vector $\mathbf{c}^{T}=[4,6,10,9,0,0]$ and the vector $\mathbf{c}_{B}^{T}=[6,0]$.

1. Sensitivity Analysis on the NBVs.

- x_{1} : Change 4 to $4+\Delta$.

We see that $\hat{c}_{1}=1 / 2$, so we have $\hat{c}_{k}-\Delta>0: \frac{1}{2}-\Delta>0 \Rightarrow \Delta<\frac{1}{2}$.

- x_{3} : Change 10 to $10+\Delta$. Again, $\hat{c}_{k}-\Delta>0$ gives: $2-\Delta>0 \Rightarrow \Delta<2$.
- x_{4} : Change 9 to $9+\Delta$, and we have $-\Delta>0$ or $\Delta<0$.
- We could also ask change the value of $s_{1}($ in $z)$. By the same reasoning of the previous variables, we would get $\frac{3}{2}-\Delta>0$.

2. Sensitivity of BVs.

- Change x_{2} from 6 to $6+\Delta$.

Since x_{2} is the first variable in \mathbf{c}_{B}, we use the first row of $B^{-1} A$ for our computation. Take the final Row 0 and add $\Delta \times$ Row 1. I have crossed out the BV positions, which sum to zero.

$$
\left.\begin{array}{cccccc}
1 / 2 & X & 2 & 0 & 3 / 2 & X \\
+ & 3 \Delta / 4 & X & 2 \Delta & 3 \Delta / 2 & \Delta / 4
\end{array}\right]
$$

We want all four non-zero expressions to be non-negative. Take the intersection of the four intervals, and we should see in this case that $\Delta>0$ will satisfy all four.

- Change s_{2} from 0 to Δ.

This is the second item in \mathbf{c}_{B}, so use the second row in the final tableau:

$$
\begin{array}{cccccc}
1 / 2 & X & 2 & 0 & 3 / 2 & X \\
+ & 9 \Delta / 2 & X & \Delta & 5 \Delta & -\Delta / 2 \\
\hline & X \\
\hline \frac{1}{2}+\frac{9}{2} \Delta & 0 & 2+\Delta & 5 \Delta & \frac{3}{2}-\frac{1}{2} \Delta & 0
\end{array} \Rightarrow 0<\Delta<3
$$

3. Changes in the RHS and the Shadow Prices.

- Change in the first constraint:

Add the RHS of the final tableau to $\Delta \times$ the first column of B^{-1}.

$$
\left[\begin{array}{l}
100 \\
200
\end{array}\right]+\Delta\left[\begin{array}{r}
1 / 4 \\
-1 / 2
\end{array}\right] \Rightarrow z=6(100+\Delta / 4)=600+\frac{3}{2} \Delta
$$

The shadow price for the first constraint is $3 / 2$.

- Change in the second constraint.

Add the RHS of the final tableau to $\Delta \times$ the second column of B^{-1} :

$$
B^{-1} \mathbf{b}+\Delta B_{2}^{-1}=\left[\begin{array}{l}
100 \\
200
\end{array}\right]+\Delta\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

so that $z=600$. The shadow price is 0 .
NOTE: It makes sense that the shadow price is zero- In the optimal tableau, if $s_{2}=200$, then we have an extra 200 hours of labor available. Increasing that by 1 does nothing to z.
4. What if we introduce a new product, x_{5}, that has a profit of $\$ 12.00$ per unit, but is a process hog: $[8,8]^{T}$. Would it be worth it to bring this product in?
SOLUTION: To price out the column, treat it as a new column of A. The new column in $B^{-1} A$ is then

$$
B^{-1} \mathbf{a}_{5}=\left[\begin{array}{rr}
1 / 4 & 0 \\
-1 / 2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

And the new Row 0 element would be

$$
-12+[6,0]\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

This means that bringing in Product 3 would actually create multiple optimal solutions, but would not increase the overall profit z.

