Extra Worked Example: Full Sensitivity Analysis

A factory can produce 4 products. Each product must be processed in each of two workshops. The processing times and profit margins for each of the four products is shown.

	1	2	3	4
Workshop 1	3	4	8	6
Workshop 2	6	2	5	8
Profit	4	6	10	9

If we have 400 hours of labor available in each workshop, the following LP can be used:

$\max z =$	$4x_1$	$+6x_{2}$	$+10x_{3}$	$+9x_{4}$	
st	$3x_1$	$+4x_{2}$	$+8x_{3}$	$+6x_{4}$	≤ 400 Labor 1
	$6x_1$	$+2x_{2}$	$+5x_{3}$	$+8x_{4}$	≤ 400 Labor 2

The initial and final tableaux:

x_1	x_2	x_3	x_4	s_1	s_2		x_1	x_2	x_3	x_4	s_1	s_2	
-4	-6	-10	-9	0	0	0	1/2	0	2	0	3/2	0	600
3	4	8	6	1	0	400	3/4	1	2	3/2	1/4	0	100
6	2	5	8	0	1	400	9/2	0	1	5	-1/2	1	200

Sensitivity Analysis

The basic variables are (in order): $\mathcal{B} = \{x_2, s_2\}$ so that the matrices B and B^{-1} can be read directly from the initial and final tableaux respectively.

$$B = \begin{bmatrix} 4 & 0\\ 2 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1/4 & 0\\ -1/2 & 1 \end{bmatrix}$$

Further, the vector $\mathbf{c}^{T} = [4, 6, 10, 9, 0, 0]$ and the vector $\mathbf{c}_{B}^{T} = [6, 0]$.

- 1. Sensitivity Analysis on the NBVs.
 - x_1 : Change 4 to $4 + \Delta$.

We see that $\hat{c}_1 = 1/2$, so we have $\hat{c}_k - \Delta > 0$: $\frac{1}{2} - \Delta > 0 \implies \Delta < \frac{1}{2}$.

- x_3 : Change 10 to $10 + \Delta$. Again, $\hat{c}_k \Delta > 0$ gives: $2 \Delta > 0 \implies \Delta < 2$.
- x_4 : Change 9 to $9 + \Delta$, and we have $-\Delta > 0$ or $\Delta < 0$.
- We could also ask change the value of s_1 (in z). By the same reasoning of the previous variables, we would get $\frac{3}{2} \Delta > 0$.
- 2. Sensitivity of BVs.
 - Change x_2 from 6 to $6 + \Delta$.

Since x_2 is the first variable in \mathbf{c}_B , we use the first row of $B^{-1}A$ for our computation. Take the final Row 0 and add $\Delta \times$ Row 1. I have crossed out the BV positions, which sum to zero.

We want all four non-zero expressions to be non-negative. Take the intersection of the four intervals, and we should see in this case that $\Delta > 0$ will satisfy all four.

• Change s_2 from 0 to Δ .

This is the second item in c_B , so use the second row in the final tableau:

- 3. Changes in the RHS and the Shadow Prices.
 - Change in the first constraint: Add the RHS of the final tableau to $\Delta \times$ the first column of B^{-1} .

$$\begin{bmatrix} 100\\ 200 \end{bmatrix} + \Delta \begin{bmatrix} 1/4\\ -1/2 \end{bmatrix} \quad \Rightarrow \quad z = 6(100 + \Delta/4) = 600 + \frac{3}{2}\Delta$$

The shadow price for the first constraint is 3/2.

• Change in the second constraint.

Add the RHS of the final tableau to $\Delta \times$ the second column of B^{-1} :

$$B^{-1}\mathbf{b} + \Delta B_2^{-1} = \begin{bmatrix} 100\\200 \end{bmatrix} + \Delta \begin{bmatrix} 0\\1 \end{bmatrix}$$

so that z = 600. The shadow price is 0.

NOTE: It makes sense that the shadow price is zero- In the optimal tableau, if $s_2 = 200$, then we have an extra 200 hours of labor available. Increasing that by 1 does nothing to z.

4. What if we introduce a new product, x_5 , that has a profit of \$12.00 per unit, but is a process hog: $[8,8]^T$. Would it be worth it to bring this product in?

SOLUTION: To price out the column, treat it as a new column of A. The new column in $B^{-1}A$ is then

$$B^{-1}\mathbf{a}_5 = \begin{bmatrix} 1/4 & 0\\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 4 \end{bmatrix} = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$

And the new Row 0 element would be

$$-12 + [6,0] \left[\begin{array}{c} 2\\ 4 \end{array} \right]$$

This means that bringing in Product 3 would actually create multiple optimal solutions, but would not increase the overall profit z.