Summary of Computations for Sensitivity Analysis

Let $\hat{\mathbf{c}}$ be the Row 0 from the final tableau (it's not negative, like $-\mathbf{c}$)
I. Change Row 0

- Change a value from NBV (coordinate k):

$$
\hat{c}_{k}-\Delta>0
$$

- Change to a BV (which is the $k^{\text {th }}$ one in the list of BVs):
"From the final tableau, take Row $0+\Delta$ times the $k^{\text {th }}$ row".
NOTE: This is only for the columns corresponding to the NBVs. Set the BV columns to zero.
II. Change the RHS ("changes in b"). If we change the $k^{\text {th }}$ constraint,
"From the final tableau, take the RHS and add Δ times the $k^{\text {th }}$ column of B^{-1}."
III. Change a column of a non-basic variable
- Same idea applies to adding a new (non-basic) variable (this would add a new column \mathbf{n} to the matrix A in the LP, with c_{n} in the objective function).
- NOTE: A change in the column to a basic variable is difficult, because the effects are very wide-spread.

For any column corresponding to a new variable or to a changed NBV, \mathbf{n}, with coefficient c_{n} in the objective function, the new column in the final tableau is given by:

$$
B^{-1} \mathbf{n}
$$

The change to the new Row 0 value is: $-c_{n}+\mathbf{c}_{B}^{T} B^{-1} \mathbf{n}$ (this was called pricing out the new variable.
IV. Add a new constraint (See 6.11).

The Formulae

$-\mathbf{c}^{T}$	0
A	$\left.\mathbf{b} \longrightarrow \begin{array}{c\|c}-\mathbf{c}^{T}+\mathbf{c}_{B}^{T} B^{-1} A & \mathbf{c}_{B}^{T} B^{-1} \mathbf{b} \\ \hline & B^{-1} A \\ B^{-1} \mathbf{b}\end{array}\right)$

1. A change in a basic variable. The new Row 0 is: $-\left(\mathbf{c}+\Delta \vec{e}_{i}\right)^{T}+\left(\mathbf{c}_{B}+\Delta \vec{e}_{k}\right)^{T} B^{-1} A$
2. A change in the RHS. The new RHS is: $B^{-1}\left(\mathbf{b}+\Delta \vec{e}_{i}\right)=\left(B^{-1} \mathbf{b}\right)+\Delta\left(B^{-1}\right)_{i}$
