Summary of Computations for Sensitivity Analysis

Let $\hat{\mathbf{c}}$ be the Row 0 from the final tableau (it's not negative, like $-\mathbf{c}$)

- I. Change Row 0
 - Change a value from NBV (coordinate k):

$$\hat{c}_k - \Delta > 0$$

- Change to a BV (which is the kth one in the list of BVs): "From the final tableau, take Row 0 +Δ times the kth row". NOTE: This is only for the columns corresponding to the NBVs. Set the BV columns to zero.
- II. Change the RHS ("changes in **b**"). If we change the k^{th} constraint, "From the final tableau, take the RHS and add Δ times the k^{th} column of B^{-1} ."
- III. Change a column of a non-basic variable
 - Same idea applies to adding a new (non-basic) variable (this would add a new column \mathbf{n} to the matrix A in the LP, with c_n in the objective function).
 - NOTE: A change in the column to a basic variable is difficult, because the effects are very wide-spread.

For any column corresponding to a new variable or to a changed NBV, \mathbf{n} , with coefficient c_n in the objective function, the new column in the final tableau is given by:

 $B^{-1}\mathbf{n}$

The change to the new Row 0 value is: $-c_n + \mathbf{c}_B^T B^{-1} \mathbf{n}$ (this was called *pricing out the new variable*.

IV. Add a new constraint (See 6.11).

The Formulae

$-\mathbf{c}^{T}$	0	$-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A$	$\mathbf{c}_B^T B^{-1} \mathbf{b}$
A	$\mathbf{b} \longrightarrow$	$B^{-1}A$	$B^{-1}\mathbf{b}$

1. A change in a basic variable. The new Row 0 is: $-(\mathbf{c} + \Delta \vec{e}_i)^T + (\mathbf{c}_B + \Delta \vec{e}_k)^T B^{-1} A$

2. A change in the RHS. The new RHS is: $B^{-1}(\mathbf{b} + \Delta \vec{e}_i) = (B^{-1}\mathbf{b}) + \Delta (B^{-1})_i$