
Chapter 5

The Best Basis

5.1 Introduction

The problem we want to consider is this: We’re given p points in IRn. Find the “best” k−dimensional basis
for the data.

There are a couple of things that will make our job easier:

• We will assume that the data has been mean-subtracted, so that the mean is zero (in IRn).

• The basis is orthonormal (each basis vector is in IRn).

• To find the “best” basis will require an error function. We will then minimize it.

At the end of this section, you’ll see that the best k−dimensional basis for your data (regardless of k)
is given by the first k eigenvectors of the covariance matrix, which are typically computed using the
Singular Value Decomposition (SVD).

5.1.1 The Covariance Matrix, Revisited

Suppose we have p data points in IRn, {x1,x2, . . . ,xp}, and they are organized column-wise in an n × p
matrix X.

As we recall, the n × n covariance matrix for data in IRn measures the covariance between the data in
coordinate i and the data in coordinate j. Using the n × p matrix X, then define x̄ ∈ IRn as the mean,
then the (i, j)th entry of the covariance matrix is given by the following, where we’re taking the covariance
between the ith and jth row of X.

Cij =
1

p− 1

p�

k=1

(xik − x̄i)(xjk − x̄j)

We will typically assume the mean is zero, so be sure and mean-subtract your data matrix before finding a
basis for your data! With zero mean,

Cij =
1

p− 1

p�

k=1

xikxjk

If we think of this computation in terms of the matrix X as in the figure below, we see that Cij can be
computed using a dot product between row i of X and column j of XT :
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Therefore, we see that the n× n matrix C can be computed one of two equivalent ways:

C =
1

p− 1
XXT or C =

1

p− 1

n�

k=1

xkx
T
k

Finally, we recognize that the covariance matrix is symmetric, so the Spectral Theorem applies. In
particular, there is an orthonormal matrix P and a diagonal matrix D so that

C = PDPT

where the columns of P form the eigenvectors associated with the diagonal elements of D (which are typically
written largest to smallest).

To connect this to the SVD of the data matrix X, if X is n× p (so that data is stored column-wise), and
we write the reduced SVD as:

X = UΣV T

Then

C =
1

p− 1
XXT =

1

p− 1
UΣV TV ΣTUT = U

�
1

p− 1
Σ2

�
UT

We see a relationship between the singular values of X, σi, and the eigenvalues of the covariance matrix, λ̂i:

1

p− 1
σ2
i = λ̂i

So far, we have defined a data matrixX, and we’ve looked at its covariance matrix C, and we’ve discovered
that the eigenvectors of the covariance matrix are the left singular vectors of the data matrix (when the data
is written column-wise and has been mean subtracted).

We’ll be getting back to the best basis in a moment, but first we want to make a few more observations.

Projections and the Mean

Suppose you have your p data points in IRn that have not been mean subtracted, and you have a vector u
onto which we want to project the data.

First, if we project one point x onto our (unit) vector u, then the projection is (xTu)u, and the scalar
projection is the number (xTu). Similarly, projecting all the data gives us p real numbers (the scalar
projections): �

uTx1,u
Tx2, . . . ,u

Txp

�

so the mean of the projected data is given by

1

p

�
uTx1 + uTx2 + . . .+ uTxp

�
= uT (x1 + x2 + . . .+ xp)

p
= uT x̄

Therefore, the mean of the projection is the projection of the mean. In particular, if the mean of a
data set is zero, and the data is projected to a vector (or subspace), then the new mean is also zero.
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Projections and the Variance

In the last section, we saw how the mean and the projection interacted. In this section, let’s see how the
variance is affected. We’ll keep our previous general data set, p points in IRn, and we’ll suppose that the
data has zero mean in IRn. By what we showed, the scalar projections would also have zero mean.

If we project the p vectors onto an arbitrary unit vector u, and consider the scalar projections, then
the resulting variance (in the direction of u will be:

S2
u =

1

p− 1

p�

k=1

(uTxk)
2 =

1

p− 1

p�

k=1

uTxkx
T
k u = uT

�
1

p− 1

p�

k=1

xkxk
T

�
u = uTCu

This is actually a very key quantity, and will come up in the next section. We will look at this quantity
more closely in a bit, but let’s look at what happens in one special case: Suppose that u is an eigenvector
of the covariance C corresponding to the first eigenvalue, λ̂1 using our previous notation. Then:

uTCu = uT λ̂1u = λ̂1

Therefore, if we project all the data to the first eigenvector of C, the new variance will be the first eigenvalue
of C.

Reconstruction Error and the Basis

Given a specific vector x ∈ IRn and an arbitrary orthonormal basis, φ1,φ2, . . . ,φn, we can write

x = (φT
1 x)φ1 + (φT

2 x)φ2 + . . .+ (φT
nx)φn

so that the magnitude of x can be written as:

�x�2 = (φT
1 x)

2 + (φT
2 x)

2 + . . .+ (φT
nx)

2.

We can use the same algebraic manipulation that we used in the last section to rewrite this as:

�x�2 = φT
1 xx

Tφ1 + φT
2 xx

Tφ2 + . . .+ φT
nxx

Tφn.

We can break this up and define the error using one vector φ1:

�x�2 = φT
1 xx

Tφ1 + �xerr�2

Now do this for all p data points. For any single vector φ1, we sum these together:

�x1�2 = φT
1 x1x

T
1 φ1 + �x(1)

err�2

+�x2�2 = φT
1 x2x2

Tφ1 + �x(2)
err�2

...

�xp�2 = φT
1 xpxp

Tφ1 + �x(p)
err�2

p�

k=1

�xk�2 = φT
1

�
p�

k=1

xkxk
T

�
φ1 +

p�

k=1

�x(k)
err�2

We can multiply everything by 1/(p− 1) to make things work. That is,

1

p− 1

p�

k=1

�xk�2 = φT
1 Cφ1 +

1

p− 1

p�

k=1

�x(k)
err�2. (5.1)
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In light of this equation, let us now define an error function using an arbitrary orthonormal basis, φ1, . . . ,φn.
The error we get when using a one dimensional representation of our data is given by

E(φ2, . . . ,φn) =
1

p− 1

p�

n=1

�x(n)
err �2.

Notice that the left side of Equation 5.1 is constant (it is the sum of the magnitudes of all the known data).
Therefore, minimizing the error function (the second term) is equivalent to maximizing the first term,
φT

1 Cφ1.

Here now is our algorithm for find the “best” basis:

1. Find the unit vector φ1 so that φT
1 Cφ1 is maximized.

2. We “project out” this vector so that the ith data point now becomes:

x(i) = x(i) − Projφ1
(x(i))

3. Re-compute C.

4. Repeat from Step 1 until we have enough basis vectors.

In practice, we will not need to do this- there is an easier way!

5.2 The Best Basis and the Eigenvectors

We have shown that finding the best basis reduces to maximizing the quantity:

max
φ �=0

φTCφ

φTφ

where we divide by the magnitude (squared) to enforce the fact that we want a unit vector, and we want to
stay away from the zero vector.

We know that the eigenvectors of the covariance matrix form an orthonormal basis for IRn, so we can
write any vector as a linear combination of them:

φ = c1v1 + c2v2 + · · ·+ cnvn = V c

Using the eigenvector-eigenvalue factorization C = V DV T , we can now write the numerator as:

φTCφ = (V c)T (V DV T )(V c) = cT (V TV )D(V TV )c = cTDc = c21λ1 + c22λ2 + · · ·+ c2nλn

Similarly, the denominator is:
φTφ = c21 + c22 + · · ·+ c2n

Let’s look at the coefficients of our expansion now. For λi, the coefficient in front is

ρi =
c2i

c21 + c22 + · · ·+ c2n

where ρi ≥ 0 and
�n

i=1 ρi = 1 (like a probability distribution). Let’s summarize where we are. We now see

that maximizing φTCφ is equivalent to choosing ρ1, ρ2, · · · , ρn so that each ρi ≥ 0 and they sum to 1, to
maximize the quantity:

ρ1λ1 + ρ2λ2 + · · ·+ ρnλn
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It is easy to see that, if the λi ≥ 0 and are ordered from largest to smallest, then:

λn ≤ ρ1λ1 + ρ2λ2 + · · ·+ ρnλn ≤ λ1.

To maximize our given quantity, we set c1 = 1 and the rest of the coefficients to zero. This leads us to our

main conclusion. The vector φ that maximizes the quantity maxφ �=0
φT

Cφ
φTφ

is given by v1, the eigenvector

corresponding to the largest eigenvalue of C. This is summarized by the theorem below:

The Best Basis Theorem

Given p points in IRn, the best k−dimensional basis is found by taking the first k eigenvectors of the covariance
matrix C. Equivalently, given the data in an n × p matrix X, the best k−dimensional basis is found by
taking the first k columns of the U , the left singular vectors of the SVD of X. Further, this is the “best”
basis for k = 1, 2, . . . , r, where r is the rank of X.

Speaking of Rank...

We discussed this briefly in an earlier section, but it is worth thinking about again.
It is useful to look at the rank as that number of basis vectors required to preserve some percentage of

the variance in the data. From our previous section on the covariance matrix, we had a relationship between
the eigenvalues of the covariance matrix, λ̂i and the singular values of X:

1

p− 1
σ2
i = λ̂i

so normalizing the set of eigenvalues is equivalent to doing it to the squared singular values:

λi =
λ̂i�n
j=1 λ̂j

=

1
p−1σ

2
i�n

j=1
1

p−1σ
2
j

=
σ2
i�n

j=1 σ
2
j

Now the λi are positive and sum to 1. The idea is to keep enough dimensions r so that

r�

i=1

λi ≥ τ but

r−1�

i=1

λi < τ.

In this case, we would say that it takes r dimensions to explain or encapsulate τ percent of the variance in
the data.

What should τ be? This is problem dependent. In some very noisy problems, you may only want to keep
τ ≈ 0.6, while with very little noise, you might take τ ≈ 0.99.

5.2.1 The Dimensionality Reduction Step

Once we have our k basis vectors, what do we do with them? First, we create our low dimensional represen-
tation of the data. Initially, the data represents p points in IRn, and we want to reduce that to p points in
IRk- These are the coordinates of each point using our k−dimensional basis. That is, if UΣV T is the svd of
X (mean subtracted), then the k dimensional data is created by the following, where U is n× k, X is n× p,
and the low-dimensional representation Xcoords is k × p.

Xcoords = UTX

Especially if k = 2 or k = 3, we can then plot the low dimensional points in the plane or in 3-d. The
“reconstruction” of the data is the representation back in IRn using the k basis vectors.

Xrecon = UXcoords = UUTX

Remember that earlier we said that UTU = I, but UUT is the projection matrix taking data in IRn and
projecting it into the column space of U (so X �= UUTX unless the columns of X are already contained
within the column space of U).
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5.3 Connecting to Principal Components Analysis (PCA)

In PCA, the principal components are defined to be a sequence of k direction vectors, where the ith vector
is the direction of a line that best fits the data while being orthogonal to the first i− 1 vectors1.

You can see that the principal components of set of data are then equivalent to the k basis vectors we’ve
constructed (the first k eigenvectors of the covariance matrix). While PCA and the best basis are the same,
you will typically hear the language of statistics used in PCA, while we use the language of linear algebra in
constructing the best basis.

5.4 Exercises

Before doing the computer problems below, you should write down (using linear algebra notation) what
computations you want to make. If you have questions (especially with the coding), I’m happy to help.

1. Suppose we have p data points in IRn. Show that the variance of the data, projected to a standard
basis vector ei, returns the usual variance for the data in that dimension. (I want you to look back at
the computations we made for this in the text, “Projections and the Variance”).

2. Suppose we have two o.n. vectors u,v ∈ IRn. Given our p points in IRn, compute the covariance
between the data projected to u and the data projected to v, and (i) show that the result is

uTCv

(ii) In the special case that u,v are eigenvectors of the covariance matrix, how does this quantity
simplify?

3. Suppose we have 4 points in IR3 as organized in the matrix X (left and below), and let φ1 =
(1/

√
3)[1, 1, 1]T . Use a computer (Octave/Matlab, Python or R) to compute the three quantities

given in the formula to the right and below. In your script, be sure you’re actually computing the
covariance matrix and each quantity separately.

X =




1 2 −1 3
0 0 1 1

−1 1 2 1


 ,

1

p− 1

p�

k=1

�xk�2 = φT
1 Cφ1 +

1

p− 1

p�

k=1

�x(k)
err�2.

4. Using the data (and vector φ1) in the previous exercise, compuationally verify our statements: The
projection of the mean is the mean of the projection, and the variance of the data projected to φ1 is
φT

1 Cφ1.

5. Verify numerically that the variance of the projected data to the first best basis vector (first one) is
given by the first eigenvalue of the covariance matrix. (Careful- if you use the eig command, the
eigenvalues are not ordered).

6. Continuing with the data from Problem 3, if we retained two of the basis vectors, how much variance
(as a percentage) is “explained” by them? (This refers to the discussion in the text about how to
compute the rank).

7. Load the clown data, we obtain a matrix X that is 200× 320. Treat this as 320 vectors in IR200.

(a) Double center the data in X (call the result Xm).

(b) Find the best two dimensional basis for the vectors in Xm, then project the data to two dimensions
and plot the result.

(Question to think about, you don’t need to answer: Did you expect a pattern or not?)

(c) Reconstruct the data back in IR200, and show the result as an image (don’t add the means back
in).

1Wikipedia, pulled March 2021
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