
Chapter 1

A Case Study in Learning

1.1 What is Learning?

Here are some definitions of learning:1

� “Learning involves strengthening correct responses and weakening incorrect responses. Learning in-
volves adding new information to your memory. Learning involves making sense of the presented
material by attending to relevant information, mentally reorganizing it, and connecting it with what
you already know.”

From eLearning and the Science of Instruction by Ruth C. Clark and Richard E. Mayer

� “Learning is the relatively permanent change in a person’s knowledge or behavior due to experience.
This definition has three components: 1) the duration of the change is long-term rather than short-
term; 2) the locus of the change is the content and structure of knowledge in memory or the behavior
of the learner; 3) the cause of the change is the learner’s experience in the environment rather than
fatigue, motivation, drugs, physical condition or physiologic intervention.”

From Learning in Encyclopedia of Educational Research, Richard E. Mayer

There are three basic types of learning in psychology:

Classical conditioning (for example, Pavlov’s dogs- the sound of a bell leads to a salivation response).
In this case, a neutral stimulus is paired with a natural response.

Operant conditioning: A response is increased or decreased due to reinforcement or punishment.

Observational learning: Learning through observation and imitation of others.

And there are generally three important stages of learning (learning as information processing)

Acquisition. An initial stage, when new information is presented and a response is established.

Retention: Transferring what we have learned into long term memory.

Recall: Use the knowledge we have obtained when it is needed (recalling a fact or performing a skill).

Consider these as we proceed into learning for machines:

1Downloaded from http://theelearningcoach.com/learning/10-definitions-learning/
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Machine Learning

There are a lot of ways we might define machine learning, but consider the following2:

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.

For example, suppose we want to classify email as being “spam” or not (this is our task T ). Then we’ll
need a database of emails labeled as to whether or not they are spam. This dataset then represents our
experience E. We’ll then need to decide on a performance measure- we’d probably choose the percent correct
as the measure P .

There are three categories of machine learning: Supervised, unsupervised, and reinforcement learning.

� Supervised learning

Supervised learning is characterized by having labeled data with access to direct feedback (performance
measure). The idea is that the computer has access to an “expert”, and the computer is building up
a model that mimics to behavior of the expert in such a way that it is able to predict the output of
unforeseen input in the same way as the expert would have predicted it (testing on data that has not
been seen is critical).

We might see that there could be issues here- If the computer simply memorizes all the input-output
pairs, is that learning?

(Trade-off between accuracy and generalizability, or in statistical terms, it is a trade-off between bias
and variance- more on this later).

� Unsupervised learning

Unsupervised learning is characterized by data with no labels or targets, but only a general goal. In
this case, there is no “expert” available. We might be finding hidden structures in data, for example.

Data clustering is an example of unsupervised learning. Feature extraction is another example.

� Reinforcement learning

One classical example is the “truck backer-upper”: We have a tractor-trailer and we need to back up
the trailer into a loading dock. Think about what the space might be, what are the decisions we need
to make, and what is “success”?

As another example, suppose there is a room with n slot machines. What is the strategy of play that
will maximize your winning? (We’ll look at this problem a bit later) In reinforcement learning, we
have to expore the domain space in order to figure out the actions, so we have several things to keep
track of.

1.1.1 Questions for Discussion:

1. Consider the concept of superstition: This is a belief that one must engage in certain behaviors in
order to gain a certain outcome, where in reality, the outcome did not depend on those behaviors. Is it
possible for a computer to engage in superstitious activity? Discuss in terms of the supervised versus
unsupervised learning paradigms.

2. A signal light comes on and is followed by one of two other lights. The goal is to predict which of the
lights comes on given that the signal light comes on. The experimenter is free to arrange the pattern
of the two response lights in any way- for example, one might come on 75% of the time.

Let E1, E2 denote the event that the first (second) light comes on, and let A1, A2 denote the prediction
that the first (second) light comes on (respectively). Let π be the probability that E1 occurs.

2Prof. T. Mitchell, CMU
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(a) If the goal is to maximize your reward through accurate predictions, what should you do in this
experiment? Just give a heuristic answer- you do not have to formally justify it.

(b) How would you program a machine to maximize it’s prediction accuracy? Can you state this in
mathematical terms?

(c) What do you think happens with actual subject (human) trials?
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Chapter 2

Statistics

2.1 Quantities and Measures for Random Data

The most basic way to characterize a numerical data set is through one number- the mean (or median or
mode).

� The sample mean for a discrete set of m numbers, x1, . . . , xm is given by:

x̄ =
1

m

m�

k=1

xk

� The mean of a set of m vectors in IRn:

Suppose we have m vectors in IRn. We can similarly define the (sample) mean by replacing the scalar
xk with the kth vector:

x̄ =
1

m

m�

k=1

x(k)

The jth element of the sample mean vector is just the sample mean of the (scalar) data in the jth

dimension of your collection of vectors.

� Note that we can also define the mean for a collection of m×n matrices, as well. For example, if I have
a collection of k photos that are each m× n pixels, then I can compute the mean photo by summing
the matrices together, then dividing by k.

� In fact, matrices have different properties that we can consider- A matrix can be thought of as a
collection of column vectors, or as a collection of row vectors, or simply a collection of numbers.

Similarly, we can compute a mean of over the columns (and getting a column), or the mean over all
rows (and get a row), or we can compute the mean over all the numerical values of the matrix, which
is called the grand mean.

� Computing the mean in Matlab, Python and R:

– Matlab:

� If x is a row or column vector (example):

x=[1,2,3,4,5];

mean(x)

� If X is an m× n matrix (example):
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X=[1,2,3; 4,5,6];

mean(X) %Returns a row vector as default

m=mean(X,1); %Returns a row vector 1 x n

m=mean(X,2); %Returns a column vector m x 1

m=mean(mean(X)); % Returns the grand mean (a scalar)

– Python: First, import numpy: import numpy as np

� If x is a row or column vector- two methods are shown below:

x=np.array([1,2,3,4,5]) #Example vector

np.mean(x) #Returns a scalar

x.mean(0) #Returns an array- a scalar or a vector

� If X is an m× n array

X=np.array([[1,2,3],[4,5,6]])

X.mean(0) # Output: array([2.5, 3.5, 4.5])

X.mean(1) # Output: array([2., 5.])

X.mean() # Output the grand mean: 3.5

Alternatively, for the row, column means respectively:

Xr=np.mean(X,axis=0)

Xm=np.mean(X,axis=1)

– R

� If x is a row or column vector: then

x<-c(1,2,3,4,5)

np.mean(x) #Returns a scalar

x.mean(0) #Returns an array- a scalar or a vector

� If X is an m× n array

x<-array(1:6,c(2,3)) #x is a 2 x 3 matrix

colMeans(x) #Returns: 1.5 3.5 5.5

rowMeans(x) #Returns: 3 4

Alternatively,

apply(x,1,mean) #Returns: 3 4

apply(x,2,mean) #Returns: 1.5 3.5 5.5

A note about language: Should “row mean” be the mean found by summing the rows together, and
producing a row, or should “row mean” be the sum through the rows, producing a column? I will
typically mean the former, but I see that R uses the latter (the command colMeans produces the mean
down the columns and returns a row, for example).

Just be sure you’re consistent with whichever method you want to define.

� The Median is a number so that exactly half the data is above that number, and half the data is below
that number. Although the median does not have to be unique, we follow the definitions below if we
are given a finite sample:

If there are an odd number of data points, the median is the middle point. If there is an even number
of data points, then there are two numbers in the middle- the median is the average of these.

The syntax for the median works in very much the same way as the mean.

� The Mode is the value taken the most number of times. In the case of ties, the data is multi-modal.

We typically would not use the mode unless there is a special reason to do so.
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2.1.1 Matlab note, Linear Algebra

We’ll be subtracting a row vector from each row of a matrix, and similarly, we’ll subtract a column vector
from each column of a matrix. You’ll note that, if A is a matrix, r is a row, and c is a column, then writing
something like:

A− r A− c

would not be defined in linear algebra, and for older versions of Matlab, this was the case as well. This
changed several years ago, so that “Matrix - Row” is assumed to be row subtraction for each row of the
matrix, and “Matrix - Column” is assumed to be carried out column-wise on the matrix. We’ll see this
below.

2.1.2 Centering and Double Centering Data

Let matrix A be m× n, which may be considered n points in IRm (this looks at the data column-wise) or m
points in IRn (looking at the data row-wise). If we wish to look at A both ways, a double-centering may be
appropriate.

The result of the double-centering will be that (in Matlab), we determine Â so that

mean(Â, 1) = 0, mean(Â, 2) = 0

There are a couple of ways to do this. Here is onw algorithm, where the means are computed first.

Algorithm for Double Centering

� Given matrix A:

– Compute the mean of the rows. Call this row r.

– Compute the mean of the columns. Call this column c.

– Compute the grand mean. Call this scalar g.

� Output the matrix: A− r − c+ g.

Here is the implementation in Matlab, Python and R:

Matlab Python R
A=[1,2,3;4,5,6]; A=np.array([[1,2,3],[4,5,6]]) A<-array(1:6,c(2,3))

r=mean(A,1); r=A.mean(0) r=apply(A,2,mean)

c=mean(A,2); c=A.mean(1) c=apply(A,1,mean)

c=c[:,np.newaxis]

g=mean(mean(A)); g=A.mean() g=mean(apply(A,1,mean))

B=A-r-c+g B=A-r-c+g B1=sweep(A,2,r)

B2=sweep(B1,1,c)

B=B2+g

Python Note about Vector Subtraction

In the Python code, we needed to “reshape” the size of the column representing the mean across A. In the
first line, c=A.mean(1), we see that the shape of c is (2, ). After the next line, the shape of c is (2, 1). We
didn’t need to do that for r, although we probably should have- That is, the current shape of r is (3, ), but
we really wanted a row vector, so we could reshape it as r=r[np.newaxis,:] so that the shape is (1, 3).
Why? If you leave c and r as defined in the code above, what happens with c-r? You get a matrix- That is,

c− r −
�

2
5

�
− [2.5, 3.5, 4.5] =

�
−0.5 −1.5 −2.5
2.5 1.5 0.5

�
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So we need to be careful when we think we’re subtracting vectors. Now back to the text...

As a final note, double centering is only suitable if it is reasonable that the m × n matrix may be data
in either IRn or IRm. For example, you probably would not double center a matrix that is 5000 × 2- Treat
this as 5000 points in IR2, so that the mean is in IR2.

2.2 Variance and Standard Deviation

The number that is used to describe the spread of the data about its mean is the variance. As with the
mean, we rarely know the underlying distribution, so again we’ll focus on the sample variance.

Let {x1, . . . , xm} be m real numbers, and x̄ its sample mean. Then the sample variance is:

s2 =
1

m− 1

m�

k=1

(xk − x̄)2

If we think of the data as a vector of length m, then this formula becomes:

s2 =
1

m− 1
�x− x̄�2

The standard deviation is the square root of the variance, so the standard deviation is s.

Quick Example

Let’s take some template data to look at what the variance (and standard deviation) measure: Consider the
data:

− 2

n
,− 1

n
, 0,

1

n
,
2

n

If n is large, our data is tightly packed together about the mean, 0. If n is small, the data are spread out.
The variance and standard deviation of this sample is:

s2 =
1

4

�
4 + 1 + 0 + 1 + 4

n2

�
=

5

2

1

n2
, s =

�
5

2

1

n

and this is in agreement with our heuristic: If n is large, our data is tightly packed about the mean, and the
standard deviation is small. If n is small, our data is loosely distributed about the mean, and the standard
deviation is large. Another way to look at the standard deviation is in linear algebra terms: If the data is
put into a vector of length m (call it x), then the (sample) standard deviation can be computed as:

s =
�x− x̄�√
m− 1

2.2.1 Covariance and Correlation Coefficients

If we have two data sets, sometimes we would like to compare them to see how they relate to each other. In
this case, it is important that the two data sets be ordered so that x1 is being compared to y1, then x2 is
compared to y2, and so on.

Definition: Let X = {x1, . . . , xn} , Y = {y1, . . . , yn} be two ordered data sets with means mx,my

respectively. Then the sample covariance of the data sets is given by:

Cov(X,Y ) = s2xy =
1

n− 1

n�

k=1

(xk −mx)(yk −my)
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There are exercises at the end of the chapter that will reinforce the notation and give you some methods
for manipulating the covariance. In the meantime, it is easy to remember this formula if you think of the
following:

If X and Y have mean zero, and we think of X and Y as vectors x and y, then the covariance is just the
dot product between the vectors, divided by n− 1:

Cov(x,y) =
1

n− 1
xTy

We can then interpret what it means for X,Y to have a covariance of zero: x is “orthogonal” to y.
Continuing with this analogy, if we normalized by the size of x and the size of y, we’d get the cosine of the
angle between them. This is the definition of the correlation coefficient, and gives the relationship between
the covariance and correlation coefficient:

Definition: The correlation coefficient between the data ordered in vector x and data in y is given
by:

rxy =
s2xy
sxsy

=

�n
k=1(xk −mx)(yk −my)��n

k=1(xk −mx)2 ·
�n

k=1(yk −my)2

If the data in x and y have been mean subtracted, then the formula is reminiscent of something from linear
algebra:

rxy =
xTy

�x� · �y� = cos(θ)

This works out so nicely because we have a 1
n−1 in both the numerator and denominator, so they cancel

each other out.
We also see immediately that rxy can only take on the real numbers between −1 and 1. Some interesting

values of rxy:

If rxy is: Then the data is:
1 Perfectly correlated (θ = 0)
0 Uncorrelated (θ = π

2 )
-1 Perfectly (negatively) correlated (θ = π)

One last comment before we leave this section: The covariance s2xy and correlation coefficient rxy only
look for linear relationships between data sets!

For example, we know that sin(x) and cos(x), either as functions, or as data points sampled at equally
spaced intervals, will be uncorrelated, but, because sin2(x) + cos2(x) = 1, we see that sin2(x) and cos2(x)
are perfectly correlated.

This difference is the difference between the words “correlated” and “statistically independent”. Statisti-
cal independence (not defined here) and correlations are not the same thing. We will look at this difference
closely in a later section.

2.3 The Covariance Matrix

Suppose we have a collection of n columns, where each column represents data in one dimension. And
suppose each column has p elements. The p × n matrix X can be thought of as either p points in IRn or n
points in IRp. Thinking of have p points in dimension i and p points in dimension j, we can compute the
variance between those dimensions.

Continuing, we can compute the covariance between all pairings of the n dimensions resulting in an n×n
matrix (note that the diagonal entries would be the covariance of a set of data with itself- which is the
regular variance). Such a matrix is known as the covariance matrix.
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In the formulas below, we’ll assume that X has beendemean-subtracted (subtract the row representing
the mean from all rows of X). The (i, j)th entry in the covariance matrix is then defined as the covariance
between the ith and jth dimensions:

s2ij =
1

p− 1

p�

k=1

X(k, i) ·X(k, j)

Computing this for all i, j will result in an n× n symmetric matrix, C, for which Cij = s2ij .
In the exercises, you’ll show that an alternative way of computing the covariance matrix is by using what

we’ll refer to as its definition below.

Definition: Let X denote a matrix of data, so that, if X is p × n, then we have p data points in IRn.
Furthermore, we assume that the data in X has been mean subtracted (so the mean in IRn is the zero
vector). Then the n× n covariance matrix associated with X is given by:

C =
1

p− 1
XTX

In the language of your choice, it is straightforward to compute the covariance matrix- but be sure to
keep in mind the dimensions.

Matlab Python R
X=rand(10,3); X=np.random.rand(10,3) X<-matrix(runif(30),nrow=10)

C=cov(X); C=np.cov(X.T,bias=False) C<-cov(X)

You might note that in Python, the default matrix arrangement is reversed, and the default number to
divide by is n rather than n− 1, unless you include the “bias” option.

2.4 Exercises

1. Compute the covariance between the following data sets:

x −1.0 −0.7 −0.4 −0.1 0.2 0.5 0.8
y −1.3 −0.7 −0.1 0.5 1.1 1.7 2.3

(2.1)

2. Let’s explore some of the things mentioned in the text. Use a computer program to verify the following:

(a) “If t is a vector of equally spaced points, the sin(t) and cos(t) (computer notation) will be uncor-
related”. Show this by example using Matlab, Python or R.

(b) Continuing, show that sin2(t) and cos2(t) are perfectly correlated (again, using Matlab, Python
or R).

(c) Take the vector t, and let y = 2t− 5. Show that the vectors t and y have a correlation of 1.

(d) Redo the previous experiment, but use any negative slope. What is the correlation coefficient?

3. Let x be a vector of data with mean x̄, and let a, b be scalars.

(a) Show, using the definition of the mean, that the mean of ax is ax̄.

(b) Similarly, find a formula for the mean of ax+ b in terms of the mean of x.

4. Let x be a vector of data with variance s2x, and let a, b be scalars.
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(a) Show, using the definition of variance, that the variance of ax is a2s2x. You might start with:

s2(ax) =
1

m− 1

m�

i=1

(axi − axi)
2

(b) Similarly, find a formula for the variance of ax+ b in terms of the variance of x.

The exercises below explore the notion that the correlation tries to find linear relation-
ships between data.

5. Show that, for data in vectors x, y and a real scalar a,

Cov(ax, y) = aCov(x, y) = Cov(x, ay)

6. For a and b fixed scalars, and data in vector x find a formula for the Cov(x, ax + b) in terms of the
variance of x.

7. For a and b fixed scalars, and data in vector x, let y = ax+ b, find the correlation coefficient r2xy and
simplify as much as possible. What do you get?

8. Let X be a p× n matrix of data, where we n columns of p data points (you may assume each column

has zero mean). Show that the (i, j)th entry of
1

p− 1
XTX is the covariance between the ith and jth

columns of X. HINT: It might be convenient to write X in terms of its columns,

X = [x1,x2, . . . ,xn]

Also show that 1
p−1X

TX is a symmetric matrix.

2.5 Line of Best Fit

In this section, we examine the simplest case of fitting data to a function. We are given p pairs of data (t is
for “target”, we’ll use y for something else):

(x1, t1), (x2, t2), . . . (xp, tp)

We wish to find a line through the data. That is, we want to find scalars m, b so that

mxi + b = ti

for each pair (xi, ti). Of course, if the data actually was on a line, we would not need p points- only two are
needed.

Therefore we assume that there is something going on so that the data is not exactly on the line- for
each point, we now have an error. We are distinguishing now between the point on the line:

yi = mxi + b

and the desired value ti. Now the error at the ith point is defined as:

(ti − yi)
2 = (ti − (mxi + b))2

and the overall error is the sum of squares error (summed over the p points):

E(m, b) =

p�

k=1

(tk − (mxk + b))2

We have now translated our problem into a Calculus problem- Find the minimum of E(m, b). Here are some
exercises to lead you to the solution:
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Exercises with the Error

1. E is a function of m and b, so the minimum value occurs where

∂E

∂m
= 0

∂E

∂b
= 0

Show that this leads to the system of equations: (the summation index is 1 to p)

m
�

x2
k + b

�
xk =

�
xktk

m
�

xk + bn =
�

tk

2. With linear algebra, the line of best fit becomes the matrix-vector equation below that has no solution.
Therefore, we are looking for the least squares solution.

mx1 + b = t1
mx2 + b = t2
mx3 + b = t3

...
...

mxp + b = tp

⇒




x1 1
x2 1
x3 1
...

...
xp 1




�
m
b

�
=




t1
t2
...

tp


 ⇒ Ac = t

In this case, the error is the norm of the difference between the matrix product Ac = y and the known
target vector t, but usually we square that difference to get the “least squares” solution. In other
words, we try to find c that minimizes:

E(c) = �t− y�2 = �t−Ac�2

For now, we can solve this problem using the normal equations. That is, we will multiply both sides
of our equation by AT to get:

Ac = t ⇒ ATAc = AT t

Originally, A was p×2, so now ATA is 2×2, which we can invert. EXERCISE: Show that this system of
two equations in two variables is the same as the system we obtained by setting the partial derivatives
to zero.

3. (Toy problem) Find the line of best fit through the data:

x −1.0 −0.7 −0.4 −0.1 0.2 0.5 0.8
y −1.3 −0.7 −0.1 0.5 1.1 1.7 2.3

(2.2)

A word of caution:

The line of best fit is mathematically a unique answer. That is, given a specific set of data, we get one
answer using our technique. However, what we have not considered is whether or not the data is actually
linear!

Students of statistics will recognize that this is the issue that you spend a good amount of time studying-
tests for goodness of fit exist, but would take us too far afield for now.
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