Review Questions

- 1. (Calculator, or by hand) Use two steps of the bisection algorithm on $f(x) = x^2 2$ on the interval [0, 2]. Be sure you follow the steps.
- 2. (Calculator, or by hand) Use two steps of Newton's Method on $f(x) = x^2 2$ with $x_0 = 1$. (On the exam, the numbers will work out without a calculator)
- 3. Define a "voronoi cell" and its relation to data clustering.
- 4. Explain the roles that ϵ and λ play in the Neural Gas algorithm.
- 5. Let x_i be a set of p real numbers. Prove that the value of c that minimizes the following quantity:

$$F(c) = \frac{1}{p} \sum_{i=1}^{p} (x_i - c)^2$$

is the mean.

6. Here are 5 points in the matrix X. Initialize two centers as the first two columns of X, compute the initial distortion error, then perform 1 update using k-means to get the number cluster centers.

$$X = \left[\begin{array}{rrrr} -1 & 1 & 1 & -2 & -1 \\ 1 & 0 & 2 & 1 & -1 \end{array} \right]$$

7. Given the data vector \mathbf{x} below and the three centers in C, update the set of centers using Neural Gas, with $\epsilon = \lambda = 1$ (not realistic, but since we're doing it by hand, we'll use easy numbers).

$$\mathbf{x} = \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \qquad \qquad C = \left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & 0 & 3 \end{array} \right]$$

8. Given a linear network that maps $\mathbb{R}^2 \to \mathbb{R}$,

$$y = w_1x_1 + w_2x_2 + b = f(x_1, x_2)$$

and given the error function using data point (\mathbf{x}, t)

$$E(w_1, w_2, b) = (t - y)^2$$

find an expression for the partial derivatives of E with respect to each parameter.

9. Given the function

$$f(x, y) = x^2 + xy + y^2 + y$$

use the second derivatives test to classify the critical points (you may alternatively use the eigenvalues of the Hessian).

10. Suppose we are given the function

$$f(x, y) = x^2 + xy + y^2 + y$$
.

We want to find a critical point of f using the multivariate Newton's method. Just perform one step, with initial point (1,1) and step size $\alpha = 0.1 = 1/10$.

11. (From exercise 1 on p 116 of the optimization notes)

Below you are given four data points. We want to find the line of best fit, y = mx + b.

- (a) Write out the error function that we will minimize.
- (b) Write the gradient of the error function.
- (c) With an initial guess of m = 0, b = -1, and a learning rate (or step size) of 0.1 = 1/10, perform one step of gradient descent.
- (d) Using the third point (2,3), perform one step of stochastic gradient descent using (1,1) and learning rate 0.1, as before.

(A bit of computation here- The main point is to understand the steps involved in the algorithms.)

12. How do you change an affine equation into a linear equation? That is, change the matrix-vector equation:

$$A\mathbf{x} + \mathbf{b} = \mathbf{y}$$

into an equivalent linear equation, $\hat{A}\hat{\mathbf{x}} = \mathbf{y}$:

- 13. What is the Widrow-Hoff update rule? You may write it either in matrix form or in scalar form.
- 14. In pattern classification, suppose I have data in the plane that I want to divide into 5 classes. Would I want to build a pattern classification function f so that the range is the following set:

$$\{1, 2, 3, 4, 5\}$$

Why or why not? If not, what might be a better range?

- 15. Given the function f(x, y), show that the direction in which f decreases the fastest from a point (a, b) is given by the negative gradient (evaluated at (a, b)).
- 16. If

$$f(t) = \left[\begin{array}{c} 3t - 1 \\ t^2 \end{array} \right]$$

find the tangent line to f at t = 1 (this linearizes f at t = 1).

- 17. If $f(x,y) = x^2 + y^2 3xy + 2$, find the linearization of f at (1,0).
- 18. Give the algorithm for k-means clustering.
- 19. Give the algorithm for Neural Gas.
- 20. In DBSCAN, we classify each data point into three sets. What are they?
- 21. In DBSCAN, what are the two main parameters that must be set?
- 22. For a linear neural net, given just one data point:

$$X = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \qquad T = [1]$$

initialize W and **b** as an appropriately sized arrays of ones, then perform one update using the Widrow-Hoff rule with step size $\alpha = 0.1$.