In-class problems

1. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \begin{bmatrix} 2\\3\\-5 \end{bmatrix} \right\}, \mathbf{y} = \begin{bmatrix} 2\\0\\-3 \end{bmatrix}.$$

• Project \mathbf{y} to each of the basis vectors of W.

• What is the orthogonal projection of ${\bf y}$ onto $W,\, {\bf \hat y}$

• Compute $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$. What should this be orthogonal to?

2. Let S be a subspace of \mathbb{R}^n , and let the columns of X form a basis for S, so that X is $n \times k$.

Show that the matrix $P = X(X^T X)^{-1} X^T$ is the projection matrix to S by doing the following:

- Show that $P^2 = P$
- Show that, for any $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{y} P\mathbf{y} \perp S$. You can do this by showing that the dot product between every basis vector in S and the vector $\mathbf{y} P\mathbf{y}$ is 0, or that

$$X^T(\mathbf{y} - P\mathbf{y}) = \vec{0}$$