
9. Continuing with the last exercise, show that UUTx is the orthogonal projection of x into the space
spanned by the columns of U by showing that (UUTx− x) is orthogonal to ui for any i = 1, 2, · · · , k.

4.2 The Four Fundamental Subspaces

Given any m× n matrix A, we consider the mapping A : IRn → IRm by:

x→ Ax = y

The four subspaces allow us to completely understand the domain and range of the mapping. We will first
define them, then look at some examples.

Definition 4.2.1. The Four Fundamental Subspaces

• The row space of A is a subspace of IRn formed by taking all possible linear combinations of the rows
of A. Formally,

Row(A) =
{
x ∈ IRn |x = ATy y ∈ IRm

}
• The null space of A is a subspace of IRn formed by

Null(A) = {x ∈ IRn |Ax = 0}

• The column space of A is a subspace of IRm formed by taking all possible linear combinations of the
columns of A.

Col(A) = {y ∈ IRm | y = Ax ∈ IRn}

The column space is also the image of the mapping. Notice that Ax is simply a linear combination of
the columns of A:

Ax = x1a1 + x2a2 + · · ·+ xnan

• Finally, we define the null space of AT can be defined in the obvious way (see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping in a particularly nice way.
Below we give a “cartoon” of the relationship between the four subspaces. On the left is the domain of the
matrix mapping, and it represents IRn. On the right is the codomain, and it represents IRm. The spaces
can apparently be split into two subspaces each. In the domain, these are the Row and Null spaces. In the
codomain, these are the Column space and the null space of AT (we don’t use this one much).

41

In the diagram, notice that the axes are representing subspaces. The picture suggests that the two spaces
that split our domain and range are actually orthogonal subspaces- and that is true.

Theorem 4.2.1. Let A be an m× n matrix. Then

• The nullspace of A is orthogonal to the row space of A

• The nullspace of AT is orthogonal to the columnspace of A

Proof: We’ll prove the first statement, the second statement is almost identical to the first. To prove
the first statement, we have to show that if we take any vector x from nullspace of A and any vector y from
the row space of A, then x · y = 0.

Alternatively, if we can show that x is orthogonal to each and every row of A, then we’re done as well
(since y is a linear combination of the rows of A).

In fact, now we see a strategy: Write out what it means for x to be in the nullspace using the rows of A.
For ease of notation, let aj denote the jth row of A, which will have size 1× n. Then:

Ax = 0 ⇒

a1

a2

...
am

x =

a1x
a2x

...
amx

 = 0

Therefore, the dot product between any row of A and x is zero, so that x is orthogonal to every row of A.
Therefore, x must be orthogonal to any linear combination of the rows of A, so that x is orthogonal to the
row space of A. �

Before going further, let us recall how to construct a basis for the column space, row space and nullspace
of a matrix A. We’ll do it with a particular matrix:

Example 4.2.1. Construct a basis for the column space, row space and nullspace of the matrix A below
that is row equivalent to the matrix beside it, RREF(A):

A =

 2 0 −2 2
−2 5 7 3

3 −5 −8 −2

 RREF(A) =

 1 0 −1 1
0 1 1 1
0 0 0 0

The first two columns of the original matrix form a basis for the columnspace (which is a subspace of IR3):

Col(A) = span

 2
−2

3

 ,
 2
−2

3

A basis for the row space is found by using the row reduced rows corresponding to the pivots (and is a
subspace of IR4). You should also verify that you can find a basis for the null space of A, given below (also
a subspace of IR4). If you’re having any difficulties here, be sure to look it up in a linear algebra text:

Row(A) = span

1
0
−1

1

 ,

0
1
1
1

 Null(A) = span

1
−1

1
0

 ,

−1
−1

0
1

We will often refer to the dimensions of the four subspaces. We recall that there is a term for the
dimension of the column space- That is, the rank.

Definition 4.2.2. The rank of a matrix A is the number of independent columns of A.

42

In our previous example, the rank of A is 2. Also from our example, we see that the rank is the dimension
of the column space, and that this is the same as the dimension of the row space (all three numbers correspond
to the number of pivots in the row reduced form of A). Finally, a handy theorem for counting is the following.

The Rank Theorem. Let the m× n matrix A have rank r. Then

r + dim (Null(A)) = n

This theorem says that the number of pivot columns plus the other columns (which correspond to free
variables) is equal to the total number of columns.

Example 4.2.2. The Dimensions of the Subspaces.
Given a matrix A that is m×n with rank k, then the dimensions of the four subspaces are shown below.

• dim (Row(A)) = k

• dim (Null(A)) = n− k

• dim (Col(A)) = k

• dim
(
Null(AT)

)
= m− k

There are some interesting implications of these theorems to matrices of data- For example, suppose A
is m × n. With no other information, we do not know whether we should consider this matrix as n points
in IRm, or m points in IRn. In one sense, it doesn’t matter! The theorems we’ve discussed shows that the
dimension of the columnspace is equal to the dimension of the rowspace. Later on, we’ll find out that if
we can find a basis for the columnspace, it is easy to find a basis for the rowspace. We’ll need some more
machinery first.

4.3 Exercises

In the exercises below, recall that the usual norm for a vector is the Euclidean norm, or the 2−norm, which
is defined as:

‖x‖ =
√
x1

1 + x2
2 + · · ·x2

n =
√

xTx

1. Show that Null(AT) ⊥ Col(A). Hint: You may use what we already proved.

2. If A is m× n, how big can the rank of A possibly be?

3. Show that multiplication by an orthogonal matrix preserves lengths: ‖Qx‖2 = ‖x‖2 (Hint: Use prop-
erties of inner products). Conclude that multiplication by Q represents a rigid rotation.

4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal vectors {xi}

‖
n∑
i=1

xi‖2 =

n∑
i=1

‖xi‖2

The case where n = 1 is trivial, so you might look at n = 2 first. Try starting with

‖x + y‖2 = (x + y)T (x + y) = · · ·

and then simplify to get ‖x‖2 + ‖y‖2. Now try the induction step on your own.

5. Let A be an m × n matrix where m > n, and let A have rank n. Let y, ŷ ∈ IRm, such that ŷ
is the orthogonal projection of y onto the column space of A. We want a formula for the matrix
P : IRm → IRm so that Py = ŷ.

The following image shows the relevant subspaces:

43

(a) Why is the projector not P = AAT ?

(b) Since ŷ − y is orthogonal to the column space of A, show that

AT (ŷ − y) = 0 (4.3)

(c) Show that there exists x ∈ IRn so that Equation (4.3) can be written as:

AT (Ax− y) = 0 (4.4)

(d) Argue that ATA (which is n× n) is invertible, so that Equation (13.2) implies that

x =
(
ATA

)−1
ATy

(e) Finally, show that this implies that

P = A
(
ATA

)−1
AT

Note: If A has rank k 6= n, then we will need something different, since ATA will not be full rank.
The missing piece is the singular value decomposition, to be discussed later.

6. The Orthogonal Decomposition Theorem: if x ∈ IRn and W is a (non-zero) subspace of IRn, then x
can be written uniquely as

x = w + z

where w ∈W and z ∈W⊥.

To prove this, let {ui}pi=1 be an orthonormal basis for W , define w = (x · u1)u1 + . . . + (x · up)up,
and define z = x−w. Then:

(a) Show that z ∈W⊥ by showing that it is orthogonal to every ui.

(b) To show that the decomposition is unique, suppose it is not. That is, there are two decompositions:

x = w1 + z1, x = w2 + z2

Show this implies that w1−w2 = z2−z1, and that this vector is in both W and W⊥. What can
we conclude from this?

7. Use the previous exercises to prove the The Best Approximation Theorem If W is a subspace of
IRn and x ∈ IRn, then the point closest to x in W is the orthogonal projection of x into W .

44

4.4 The Decomposition Theorems

The matrix factorization that arises from an eigenvector/eigenvalue decomposition is useful in many appli-
cations, so we’ll briefly review it here and build from it until we get to our main goal, the Singular Value
Decomposition.

4.4.1 The Eigenvector/Eigenvalue Decomposition

First we have a basic definition:

Let A be an n× n matrix. If there exists a scalar λ and non-zero vector v so that

Av = λv

then we say that λ is an eigenvalue and v is an associated eigenvector.

An equivalent formulation of the problem is to solve Av − v = 0, or, factoring v out,

(A− λI)v = 0

This equation always has the zero solution (letting v = 0), however, we need to have non-trivial solutions,
and the only way that will happen is if A− λI is non-invertible, or equivalently,

det(A− λI) = 0

which, when multiplied out, is a polynomial equation in λ that is called the characteristic equation.

Therefore, we find the eigenvalues first, then for each λ, there is an associated subspace- The null space
of A− λI, or the eigenspace associated with λ, denoted by Eλ.

The way to finish the problem is to give a “nice” basis for the eigenspace- If you’re working by hand, try
one with integer values. If you’re on the computer, it is often convenient to make them unit vectors.

Some vocabulary associated with eigenvalues: Solving the characteristic equation will mean that we can
have repeated solutions. The number of repetitions is the algebraic multiplicity of λ. On the other hand, for
each λ, we find the eigenspace which will have a certain dimension- The dimension of the eigenspace is the
geometric multiplicity of λ.

Examples:

1. Compute the eigenvalues and eigenvectors for the 2× 2 identity matrix.

SOLUTION: The eigenvalue is 1 (a double root), so the algebraic multiplicity of 1 is 2.

On the other hand, if we take A− λI, we simply get the zero matrix, which implies that every vector
in IR2 is an eigenvector. Therefore, we can take any basis of IR2 is a basis for E1, and the geometric
multiplicity is 2.

2. Consider the matrix [
1 2
0 1

]
Again, the eigenvalue 1 is a double eigenvalue (so the algebraic multiplicity is 2), but solving (A−λI)v =
0 gives us:

2v2 = 0 ⇒ v2 = 0

That means v1 is free, and the basis for E1 is [1, 0]T . Therefore, the algebraic multiplicity is 1.

45

Definition: A matrix for which the algebraic and geometric multiplicities are not equal is called defective.

There is a nice theorem relating eigenvalues:

Theorem: If X is square and invertible, then A and X−1AX have the same eigenvalues.

Sometimes this method of characterizing eigenvalues in terms of the determinant and trace of a matrix:

det(A) = Πn
i=1λi trace(A) =

∞∑
i=1

λi

Symmetric Matrices and the Spectral Theorem

There are some difficulties working with eigenvalues and eigenvectors of a general matrix. For one thing,
they are only defined for square matrices, and even when they are defined, we may get real or complex
eigenvalues.

If a matrix is symmetric, beautiful things happen with the eigenvalues and eigenvectors, and it is sum-
marized below in the Spectral Theorem.

The Spectral Theorem: If A is an n× n symmetric matrix, then:

1. A has n real eigenvalues (counting multiplicity).

2. For each distinct λ, the algebraic and geometric multiplicities are the same.

3. The eigenspaces are mutually orthogonal- both for distinct eigenvalues, and we’ll take each Eλ to have
an orthonormal basis.

4. A is orthogonally diagonalizeable, with D = diag(λ1, λ2, . . . , λn). That is, if V is the matrix whose
columns are the (othornormal) eigenvectors of A, then

A = V DV T

Some remarks about the Spectral Theorem:

• If a matrix is real and symmetric, the Spectral Theorem says that its eigenvectors form an orthonormal
basis for IRn.

• The first part is somewhat difficult to prove in that we would have to bring in more machinery than
we would like. If you would like to see a proof, it comes from the Schur Decomposition, which is given,
for example, in “Matrix Computations” by Golub and Van Loan.

The following is a proof of the third part. Supply justification for each step: Let v1, v2 be eigenvectors
from distinct eigenvalues, λ1, λ2. We show that v1 · v2 = 0:

λ1v1 · v2 = (Av1)Tv2 = vT1 A
Tv2 = vT1 Av2 = λ2v1 · v2

Now, (λ1 − λ2)v1 · v2 = 0.

The Spectral Decomposition: Since A is orthogonally diagonalizable, then

A = (q1 q2 . . . qn)

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

qT1
qT2
...
qTn

46

so that:

A = (λ1q1 λ2q2 . . . λnqn)

qT1
qT2
...
qTn

so finally:

A = λ1q1q
T
1 + λ2q2q

T
2 + . . .+ λnqnq

T
n

That is, A is a sum of n rank one matrices, each of which is a projection matrix.

Exercises

1. Prove that if X is invertible and matrix A is square, then A and X−1AX have the same eigenvalues.

2. Programming Exercise: Verify the spectral decomposition for a symmetric matrix. Here are ex-
amples in Matlab, Python and R. First, we’ll construct a random symmetric 6× 6 matrix, then we’ll
compute the eigenvalues and eigenvectors.

• Matlab:

%Construct a random, symmetric, 6 x 6 matrix:

N=6;

Atemp=rand(N,N);

A=(Atemp+Atemp’)/2; %A is symmetric

%Compute the eigenvalues of A:

[Q,L]=eig(A); %NOTE: A = Q L Q’

%L is a diagonal matrix

%Now form the "spectral sum"

S=zeros(6,6);

for i=1:6

S=S+L(i,i)*Q(:,i)*Q(:,i)’;

end

max(max(S-A))

Note that the maximum of S−A should be a very small number! (By the spectral decomposition
theorem).

• Python:

import numpy as np

import numpy.linalg

N=6;

Atemp=np.random.rand(N,N)

A=(Atemp+Atemp.T)/2 #Makes A symmetric

D,V=numpy.linalg.eig(A)

S=np.zeros((6,6))

for i in range(0,6):

S=S+D[i]*np.outer(V[:,i],V[:,i])

47

print(numpy.linalg.norm(A-S,’fro’))

• R:

A<-matrix(runif(36),ncol=6)

A<-(A+t(A))/2 #Makes A symmetric

P<-eigen(A) #Creates a structure holding info

D<-P$values

V<-P$vectors

S=matrix(0,nrow=6,ncol=6)

for (i in 1:6){

S=S+D[i]*(V[,i] %*% t(V[,i]))

}

print(norm(A-S,"F"))

4.4.2 The Singular Value Decomposition

There is a special matrix factorization that is extremely useful, both in applications and in proving theorems.
This is mainly due to two facts, which we shall investigate in this section: (1) We can use this factorization
on any matrix, (2) The factorization defines explicitly the rank of the matrix, and gives orthonormal bases
for all four fundamental subspaces of A.

In what follows, assume that A is an m×n matrix (so A maps IRn to IRm and is not necessarily square).
We’ll build the factorization by using the Spectral Theorem twice.

Step 1. Although A itself is not symmetric, ATA is n × n and symmetric, so the Spectral Theorem applies,
and we define an n× n orthonormal matrix V and diagonal matrix D1 (with eigenvalues λ along the
diagonal): using that theorem:

ATA = V DV T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 2. Similarly, the m × m matrix AAT is also symmetric, and so applying the Spectral Theorem again
defines an m×m orthonormal matrix U and diagonal matrix D2 such that

AAT = UD2U
T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 3. Later, we will show that the non-zero diagonal elements of D1 and D2 are identical. Assuming the
rank of A to be k, we’ll define the singular values of A as:

σi =

{ √
λi if 1 ≤ i ≤ k
0 for the remaining values

where λi is the ith diagonal element of D1 or D2. The m × n matrix Σ is defined to be the m × n
diagonal matrix with singular values along the diagonal (ordered from largest to smallest).

Theorem The Singular Value Decomposition (SVD) Let A be any m× n matrix of rank k. Then we can
factor the matrix A as the following product:

A = UΣV T

where U is an orthogonal m×m matrix, Σ is a diagonal m× n matrix, and V is an orthogonal n× n
matrix. The columns of U are called the left singular vectors and the columns of V are called the right
singular vectors. Further, there are exactly k non-zero singular values of A.

48

Before we get to the exercises, there is a different way of expressing the SVD that is similar to our spectral
decomposition. Recall that the rank is k:

A = UΣV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

Please note that this is a sum of k matrices, not scalars- That is, we’re computing outer products, σiuiv
T
i

is an m× n matrix.

4.5 Exercises

In the exercises below, we’ll look more closely at the SVD and the relationships between the vectors in U and
V . As you’re working through these, be sure to keep in mind the dimensions of the objects you’re working
with.

For all of the exercises, assume that A is m× n with rank k, and the SVD of A is UΣV T .

1. Show that if λ is an eigenvalue of ATA, then λ is also an eigenvalue of AAT .

Hint: If λ is an eigenvalue of ATA with eigenvector v, then ATAv = λv. Now what equation must be
true if λ is an eigenvalue of AAT ?

2. There is a beautiful relationship between the column vectors of U and V . We will assume that A is
m× n with rank k, and A = UΣV T is the SVD of A. Then:

Avi = σiui and ATui = σivi

NOTE: The importance of this is that, if you know the left singular vectors, then you can compute the
right singular vectors.

HINT: You might start with Avi, then recall that A = UΣV T , which can be written as a sum of k
matrices. The proof of the second equation is similar.

3. We said that σi =
√
λi. Here we prove that λi ≥ 0, so that the singular values are always real:

Show that λi ≥ 0 for i = 1..n by showing that ‖Avi‖2 = λi. HINT: As a starting point, you might
rewrite

‖Avi‖2 = (Av)TAv

4. Prove that, if vi and vj are distinct eigenvectors of ATA, then their corresponding images, Avi and
Avj , are orthogonal.

5. Prove that, if x = α1v1 + . . . αnvn, then ‖Ax‖2 = α2
1λ1 + . . . + α2

nλn. (You might check the hint in
#3).

6. Let W be the subspace generated by the basis {vj}nj=k+1, where vj are the eigenvectors associated

with the zero eigenvalues of ATA (therefore, we are assuming that the first k eigenvalues are NOT
zero). Show that W = Null(A).

Hint: To show this, take an arbitrary vector x from W . Rather than showing directly that Ax = 0,
instead show that the magnitude of Ax is zero. We also need to show that if we take any vector from
the nullspace of A, then it is also in W .

7. Prove that if the rank of ATA is r, then so is the rank of A.

Hint: How does the previous exercise help?

8. Compute the SVD by hand of the following matrices:

A1 =

(
1 1
0 0

)
A2 =

 0 2
0 0
0 0

(Hint: ATA and AAT are symmetric matrices.)

49

Figure 4.1: The SVD of A ([U,S,V]=svd(A)) completely and explicitly describes the 4 fundamental subspaces
associated with the matrix, as shown. We have a one to one correspondence between the rowspace and
columnspace of A, the remaining v’s map to zero, and the remaining u’s map to zero (under AT).

4.6 Notes about the SVD

The SVD computes a basis for all 4 fundamental subspaces for matrix A. To be more specific, let A = UΣV T

be the SVD which has rank k. Be sure that the singular values are ordered from highest to lowest. Then:

1. A basis for the columnspace of A, Col(A) is {ui}ki=1

2. A basis for nullspace of A, Null(A) is {vi}ni=k+1

3. A basis for the rowspace of A, Row(A) is {vi}ki=1

4. A basis for the nullspace of AT , Null(AT) is {ui}mi=k+1

Those are the basis vectors, but does σi also have some geometric interpretation? Yes- Recall that
Avi = σiui. Therefore, we can think of each σi as either a stretching or contraction factor along each vi
(which turns into ui.

The SVD is one of the premier tools of linear algebra primarily because it allows us to completely reveal
everything we need to know about a matrix mapping: The rank, the basis of the nullspace, a basis for the
column space, the basis for the nullspace of AT , and of the row space. See Figure 4.1.

Lastly remembering that matrix multiplication is function composition, and multiplication by an orthog-
onal matrix represents a “rotation”, the SVD provides a means of decomposing any linear mapping into two
“rotations” and a scaling. This will become important later when we try to deduce a mapping matrix from
data.

4.6.1 The Reduced (or “economy-size”) SVD

If you have a matrix A that is 50000× 3, you should NOT ask for the complete SVD decomposition unless
you really, really mean it.

Why? Think about the sizes of your matrices- The matrix U would be 50000 × 50000, which is very
large, and most of which is not needed. Indeed, the rank of your matrix is at most 3, so there are only at
most three columns of your matrix that are really needed (unless again, you specifically require the basis for

50

the nullspace of AT). Instead, what you want to compute is called the Reduced SVD (or the economy-size
SVD).

Definition: The Reduced SVD

Let A be m× n with rank k. Then we can write:

A = Ũ Σ̃Ṽ T

where Ũ is an m×k matrix with orthogonal columns, Σ̃ is an k×k square matrix, and Ṽ is an n×k matrix.

Most of the time we’ll only need the reduced SVD- The only difference is that we’re stripping away the
two nullspaces from the set of four fundamental subspaces. We’ll see an example comparing the full with
the reduced SVD below.

Remarks on some language: The reader will see several ways of referring to the “non-full” SVD.
For example, there is reduced SVD, truncated SVD, and thin SVD to name three. I typically refer to the
reduced SVD by using the rank of the matrix k to define matrix sizes (as above). If m > n, and we use n to
define the sizes, then the decomposition is referred to as the “thin SVD” (Golub and Van Loan). However,
computer software rarely will compute the rank of the matrix unless requested, so they actually compute
the thin SVD, but will refer to it as the reduced SVD. The moral of the story is to be sure you know which
version it is that you’re using!

4.7 Programming with the SVD

Here, we’ll perform some computations with a small, 5 × 3 matrix to illustrate some of the formulas we’ve
been working with. We’ll make the matrix have rank 2, then we’ll compare the full and reduced SVD
formulas. For this example, we’ll take

A =

−1 2 4

1 0 −2
0 1 1
1 3 1
1 2 0

Now, the full SVD would look like UΣV T , where U,Σ, and V are below (resp):

0.78 0.35 −0.38 −0.35 −0.06
−0.28 −0.45 −0.82 −0.19 −0.03

0.25 −0.05 −0.23 0.63 0.69
0.46 −0.60 0.11 0.38 −0.52
0.21 −0.55 0.34 −0.54 0.49

5.68 0 0
0 3.42 0
0 0 0
0 0 0
0 0 0

 −0.07 −0.57 −0.82

0.63 −0.66 0.41
0.77 0.49 −0.41

The reduced SVD would strip away the nullspaces, leaving us with Ũ , Σ̃, Ṽ below (resp):
0.78 0.35
−0.28 −0.45

0.25 −0.05
0.46 −0.60
0.21 −0.55

[

5.68 0
0 3.42

] −0.07 −0.57
0.63 −0.66
0.77 0.49

Secondly, let’s look at the decomposition we discussed a few pages ago. That was:

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

In our case, k = 2, and we’ll compute this using our three computer languages as a check.

51

Matlab and the SVD

The full command is [U,S,V]=svd(A), where A = USV T . For the reduced SVD, add a zero in the list of
arguments, [U,S,V]=svd(A,0). Then here’s the script using our example matrix A:

A=[-1 2 4;1 0 -2;0 1 1;1 3 1;1 2 0];

[U,S,V]=svd(A);

Temp=S(1,1)*U(:,1)*V(:,1)’+S(2,2)*U(:,2)*V(:,2)’;

norm(A-Temp,’fro’)

% We could compute "Temp" as:

Temp2=U(:,1:2)*S(1:2,1:2)*V(:,1:2)’;

norm(A-Temp2,’fro’)

Side note: The ’fro’ part of the norm is short for “Frobenius”. The Frobenius norm of a matrix is like
treating the whole matrix as one big vector, then applying the Euclidean norm. That is, take every element,
square it, then sum those and take the square root of the result.

Python and the SVD

Quick note: After working with Python and matrices for a bit, I see that in Python 3.5 and later, the @

symbol is used for matrix multiplication, so I’ll use that below rather than np.matmul.
As a side note, if we want columns indexed as i to j from array A, use the notation A[:,i:j+1]. So the

first two columns would be A[:,0:2], where columns 0 and 1 are extracted.

import numpy as np

A=np.array([[-1,2,4],[1,0,-2],[0,1,1],[1,3,1],[1,2,0]])

U,S,VT=np.linalg.svd(A,full_matrices=0)

Temp=S[0]*U[:,:1] @ VT[:1,:] + S[1]*U[:,1:2] @ VT[1:2,:]

We could compute Temp as:

Temp2=U[:,0:2] @ np.diag(S[:2]) @ VT[0:2,:]

R and the SVD

A<-cbind(c(-1,1,0,1,1),c(2,0,1,3,2),c(4,-2,1,1,0))

A.svd<-svd(A) #Creates a structure holding info

U<-A.svd$u

D<-A.svd$d #Note that R uses UDV^T instead of USV^T

V<-A.svd$v

Temp<-D[1] * U[,1] %*% t(V[,1]) + D[2]* U[,2] %*% t(V[,2])

norm(A-Temp)

Temp2<-U[,1:2] %*% diag(D[1:2]) %*% t(V[,1:2])

norm(A-Temp2)

Next, we’ll be looking at two applications- One in image processing, and one in computing a generalized
inverse.

4.8 Generalized Inverses

Let a matrix A be m×n with rank k. In this general case, A does not have an inverse (A is not even square).
Is there a way of restricting the domain and range of the mapping y = Ax so that the restricted map is
invertible? And if so, how do we compute that inverse?

52

We’ll find that the “inverse function” will be called the Moore-Penrose Pseudo-Inverse, and is
relatively easy to compute using the SVD of matrix A. Indeed, let’s consider the matrix equation:

Ax = b

Replacing A by the reduced SVD (reduced to m× k, k × k, n× k matrices), we have:

UΣV Tx = b

Since U is m× k with orthonormal columns, UTU is the k × k identity, so we multiply both sides by UT :

UTUΣV Tx = UT b ⇒ ΣV T = UT b

The matrix Σ is k × k with singular values along the diagonal. Because the rank is k, we have k non-
zero singular values, so Σ is invertible. In the exercises, we’ll show that the inverse is found by taking the
reciprocal of each diagonal element- We’ll see how that’s computed in the programming section. Multiply
both sides by the inverse:

Σ−1ΣV Tx = Σ−1UT b ⇒ V T c = Σ−1UTx

Finally, multiply both sides by V . Remember, V V T 6= I, however, V V Tx is the projection of x into the
rowspace of A. We’ll call that x̃.

x̃ = V Σ−1UT b

This matrix product is the pseudo-inverse, denoted by dagger notation

A† = V Σ−1UT

You might recall that A is m × n, and the pseudo-inverse A† is n × m. Just to be clear, this “inverse”
will take a general b ∈ IRm and map it back to an x in the rowspace of A. If you check, A will map x to
the the projection of b to the columnspace of A (unless it is in the columnspace already). That’s what we
mean when we say that this mapping has been restricted to be between the k−dimensional rowspace and
columnspace. Restricted to these two subspaces, the mapping x→ Ax is 1-1 and onto, and invertible!

Finding the rank of A

What we haven’t discussed yet is the determination of the rank k. Theoretically, the value of k is the number
of non-zero singular values (or non-zero eigenvalues of AAT or ATA).

The problem is one that is not theoretical, but computational. We need to determine if a number is zero,
or if it is not- Seems simple, but we seldom see exactly zero in our computations- In the computations, what
typically happens is that the singular values approach zero, and then we need to decide on a cut-off: how
close to zero is zero?

The cut-off is typically arbitrary and problem-dependent. For example, if there is a clear drop between
numbers (like σ2 = 8 and σ3 = 0.01), then we might go ahead and take the rank to be 2.

Often we look at the eigenvalues of AAT or ATA rather than the singular values- The reason is that later
we’ll see that the eigenvalues actually represent some statistical properties of the data (related to variance).
In order to be consistent, rather than looking at the eigenvalues themselves, we’ll look at the normalized
eigenvalues:

λ1∑
i λi

,
λ2∑
i λi

, . . . ,
λn∑
i λi

These sum to 1, like probabilities. One idea is to take the rank k to be that scaled eigenvalue such that the
sum of the first k values is at least, say, 0.99.

There are other ways as well. In fact, for large matrices, Gavish and Donoho1 published some work on
finding the optimal rank.

1Gavish and Donoho, “The Optimal Hard Threshold for Singular Values is 4/
√

3”, IEEE Transactions on Information
Theory, v 60, Issue 8, 2014, pg 5040 - 5053

53

Programming Examples in Matlab, Python and R

The problem we’ll be solving on the computer is to find the solution to the following matrix equation by
explicitly computing the pseudo-inverse.

1 2 3
4 5 6
7 8 9

10 11 12

x =

4
−1

2
1

In the code below, we will first construct the SVD of A, and then inspect the diagonal values of S to
determine the rank (in this case, the rank is 2). We then compute the pseudo-inverse, Ap, and find the (least
squares) solution to the equation above.

Finally, we verify our theory by comparing Ax and the projection of b into the columnspace of A (they
should be the same). Similarly, we compare our solution x with the projection of x into the rowspace (the
projection of the projection does not change, so these should be the same vector).

We should note that each of these languages has the pseudo-inverse built in (probably pinv), but before
we use it, we want to be sure we understand how it is constructed- The (possibly) non-trivial part of the
construction is the determination of the rank of A.

• Matlab:

A=[1 2 3;4 5 6;7 8 9;10 11 12];

b=[4;-1;2;1];

[U,S,V]=svd(A);

S

Ap=V(:,1:2)*diag(1./diag(S(1:2,1:2)))*U(:,1:2)’; %Pseudo-inverse

xsoln=Ap*b %The "solution" to our system.

A*xsoln %This is what Ax actually is.

U(:,1:2)*U(:,1:2)’*b %See if Ax is the proj of b into

% col(A).

V(:,1:2)*V(:,1:2)’*xsoln %See if x is the same as proj of x

% into row(A).

• Python:

import numpy as np

A=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])

b=np.array([[4],[-1],[2],[1]])

U,S,VT=np.linalg.svd(A,full_matrices=0)

print(S) # In Python, S is not a diagonal matrix

Ap= VT[0:2,:].T @ np.diag(1/S[0:2]) @ U[:,0:2].T

xsoln=Ap @ b

print(A @ xsoln) #This vector and the next should be the same.

print(U[:,0:2] @ U[:,0:2].T @ b)

print(xsoln) #This vector and the next should be the same.

print(VT[0:2,:].T @ VT[0:2,:] @ xsoln)

• R:

A<-cbind(c(1,4,7,10),c(2,5,8,11),c(3,6,9,12))

54

b=cbind(c(4,-1,2,1))

A.svd<-svd(A) #Creates a structure holding info

U<-A.svd$u

S<-A.svd$d #Note that R uses UDV^T instead of USV^T

V<-A.svd$v

Ap=V[,1:2] %*% diag(1/S[1:2]) %*% t(U[,1:2])

xsoln=Ap %*% b

A%*%xsoln #This vector and the next should be equal

U[,1:2] %*% t(U[,1:2]) %*% b

V[,1:2] %*% t(V[,1:2]) %*% xsoln #This vector and the next should be equal

xsoln

4.9 Exercises

Before working through the exercises, be sure you’ve tried out the SVD and pseudo-inverse code examples
so you have the template files ready for the homework.

1. In each of the programming languages, we built Σ−1 by replacing each diagonal element with its
reciprocal. Because we had rank 2, we only used the first two elements.

What happens if you forget that, and compute (in each language, respectively):

Matlab: U*diag(1./diag(S))*V’ Python: VT.T @ np.diag(1/S) @ U.T

In R: V%*% diag(1/S)%*% t(U)

Compare these to your previous pseudo-inverse. Notice anything? What happened?

2. Some sources say that, if A is full rank (let’s assume that m > n with rank n), then the pseudo-inverse
can be computed as the following. We want to verify this using the SVD.

A† = (ATA)−1AT

Hint: Start with A = UΣV T , and note that Σ−1Σ−1 = Σ−2, and Σ−2Σ = Σ−1, since Σ is a diagonal
matrix.

3. Let A be m× n with rank k, so that A† = UΣ−1V T is from the rank k SVD of A.

(a) Show that the pseudo-inverse of the pseudo-inverse is the matrix A: (A†)† = A

(b) Simplify the expression AA† using the SVD.

(c) Simplify the expression A†A using the SVD.

(d) Given Ax = b, solve for x by first multiplying both sides by A†, and use your previous simplifi-
cation to simplify the equation.

4. Consider [
2 1 −1
3 1 2

] x1

x2

x3

 =

[
5
1

]
(a) Before solving this problem, what are the dimensions of the four fundamental subspaces?

(b) Use Matlab, Python or R to compute the SVD of the matrix A, and solve the problem by
computing the pseudoinverse of A explicitly.

55

(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace, similar
to the example.

5. Consider
2 1 −1 3
−1 0 1 −2

7 2 −5 12
−3 −2 0 −4

4 1 −3 7

x1

x2

x3

x4

 =

5
1
0
−2

6

(a) Find the dimensions of the four fundamental subspaces by using the SVD of A (in Matlab, Python

or R).

(b) Solve the problem.

(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace.

56

