
(These notes change the notes from class starting at the bottom of page 15, The Co-
variance Matrix)

Notation correction

The sample covariance is denoted by s2 (and the standard deviation is denoted by s), and
is defined as

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

This is also denoted as Sxx. Then the covariance would be

Cov(X, Y ) = Sxy

and we wouldn’t square this (there was an error in the previous notes).

Normalizing a data set

We have to be careful dealing with data that is badly scaled, For example, if one dimension
has all of its data scaled between 0.1 and 0.2, and in another dimension, the data is scaled to
between −1000 and 2000, then any algorithm using this data will focus solely on the second
variable (dimension) in order to get an accurate model, and will ignore the first variable.

Therefore, we typically want to make the data in each dimension similarly scaled. There
are several ways to do this, here are two popular methods:

Scaled to [0, 1]

Given data {x1, x2, . . . , xn}, we find the minimum and the maximum data point, and call
them xmin, xmax. Also, define L = xmax − xmin. Then every data point is scaled:

xi → xi − xmin

L

Notice that if xi = xmin, we get 0. Similarly, if xi = xmax, then we get 1. All the other data
points are mapped to between 0 and 1, as desired.

Zero mean, unit STD

Given data {x1, x2, . . . , xn}, it is common to normalize the data to have zero mean and unit
standard deviation. Therefore, given the sample mean x̄ and sample variance s2 (so the
sample standard deviation is s), the new data set is constructed:

xi → xi − x̄
s

has a mean of zero and unit variance (and therefore, unit standard deviation).
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Matrix notation and Scaling

(NOTE: The operations being discussed here wouldn’t be defined in a standard
linear algebra course. However, they are becoming standard in coding languages,
since we need to perform these operations so often when working with data.)

Matrix plus row/col

Suppose our matrix is p × n, where p is the number of points (or number of observations),
and n is the number of dimensions (or number of variables).

Let m be a (row) vector consisting of the mean of each column, and let s be a row vector
consisting of the standard deviation of the data in each column (therefore, m and s are both
row vectors containing n elements).

For matrix arithmetic, assume that if we add a matrix and a row of length n, that means
the row is added to every row of the matrix. Similarly, addition of a column would mean
that the column is added to every column of the matrix (so the dimension of the row, column
vector would need to be consistent with the dimension of the matrix).

For example, [
1 2 3
4 5 6

]
− [1 1 2] =

[
0 1 1
3 4 4

]
[

1 2 3
4 5 6

]
− [1 1] = is not defined

[
1 2 3
4 5 6

]
+

[
1
1

]
=

[
2 3 4
5 6 7

]

Matrix multiplied/divided by a row/col

Similarly, let’s take multiplication or division by an appropriately sized row or column would
mean elementwise division to each row or column. For example,[

1 2 3
4 5 6

] [
1
2

]
=

[
1 2 3
8 10 12

]
[

1 2 3
4 5 6

]
[1 2 3]

=

[
1 1 1
4 5/2 2

]
Programming note in Matlab: This type of multiplication and division is denoted by a dot
then the operation. For example, A.*b or A./b
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Add/subtract, mult/divide a row and a column

If r is a row vector with n elements and c is a column vector with m elements, then adding,
subtracting, multiplying or dividing them would result is an m× n matrix, where the (i, j)
element would be computing by making the operation between r(j) and c(i), or we might
visualize this in tabular notation:

r1 r2 · · · rn
c1 · · ·
c2 · · ·

...
cm

so that thet (i, j) entry of the array is made from the appropriate entries.

Scaling Using Matrix Notation

If X is a matrix (p × n), and m is the row vector of means (one for each column), s is a
row vector of standard deviations in each column, then we define the standard matrix Z by
taking:

Z =
X −m

s
Then the covariance matrix of X is given by

C =
1

n− 1
(X −m)T (X −m)

And the correlation matrix is given by

1

n− 1
ZTZ

Linear Regression

Basic Model

Given a set of p pairs of data:

{(x1, y1), (x2, y2), . . . , (xp, yp)}

we’re told that we wish to model the data as:

y = mx+ b

and the problem is to find the slope m and the intercept b. Geometrically, this is finding a
line that goes through the data. If we were able to do this exactly, then we know that two
points determine the line, and so the rest of the data is not needed.
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What makes the problem more difficult is that we’ll assume that the data does not lie
exactly on a line, and so in that sense, the problem has no solution.

Since the data does not lie on a line, no matter what m, b we choose, there will be an
error between the y that is predicted by the model (let’s use ŷ for that), and the y coming
from the data- We’ll call this the residual:

εi = y − ŷ = yi − (mxi + b)

Now we want to construct an error function (or loss function). Given an error function,
we should then be able to solve the problem mathematically by minimizing the function.

An error function should be a function that maps our data to the non-negative real
numbers. In our case, we wouldn’t want to simply add up the residuals, since they may be
negative and positive. To make them all positive, we’ll define the error for the ith data point
as:

ε2i = (yi − ŷ2i ) = (yi −mxi − b)2

Then overall, our error function E will be the sum of the squared errors (SSE), and the
unknowns in the error function are the m, b:

E(m, b) =
p∑

i=1

(yi −mxi − b)2

Finding the minimum of E

From calculus, we know how to find the minimum of E- The candidates for the minimum
occur when the partial derivatives of E are all equal to zero (or, we set the gradient of E to
zero):

∂E

∂m
= 0

∂E

∂b
= 0

Also, we might notice that E is a sum of errors, and the derivative of a sum is the sum of the
derivatives. Therefore, it may be easiest to compute the partial derivatives term-by-term.
For example, the ith term in E is

(yi −mxi − b)2

Therefore, the partial derivatives with respect to m and b (respectively) are the following
(use the chain rule):

∂

∂m
(yi −mxi − b)2 = 2(yi −mxi − b)(−xi)

and
∂

∂b
(yi −mxi − b)2 = 2(yi −mxi − b)(−1)

Following through with this last derivative, let’s compute Eb and set it equal to zero.

Eb =
p∑

i=1

2(yi −mxi − b)(−1) = 2
p∑

i=1

(−yi) + 2m
p∑

i=1

xi + b
p∑

i=1

2 = 0
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m
p∑

i=1

xi + b · p =
p∑

i=1

yi

Similarly, we can show that solving for Em = 0 will give us:

m
p∑

i=1

x2i + b
p∑

i=1

xi =
p∑

i=1

xiyi

and that gives us two equations in m, b:

m
p∑

i=1

x2i + b
p∑

i=1

xi =
p∑

i=1

xiyi

m
p∑

i=1

xi + b · p =
p∑

i=1

yi

Solving for m, b

From the equation for ∂E/∂b, we can say that

b = ȳ −mx̄
Using this expression for b, go to the other equation and substitute:

m
n∑

i=1

x2i + (ȳ −mx̄)
n∑

i=1

xi =
n∑

i=1

xiyi

Now we can also start to solve for m:

m

(
n∑

i=1

x2i − x̄
n∑

i=1

xi

)
=

n∑
i=1

xiyi − ȳ
∑

xi

What we would like to do is to show that this equation leads us to the following:

m =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=
Sxy

Sxx

where x̄ = 1
n

∑n
i=1 xi. Hint: You can also write that

n∑
i=1

xi = nx̄

Then show by expanding out the square and simplifying, that
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2i − nx̄2 =
n∑

i=1

x2i − x̄
n∑

i=1

xi

Should you be using linear regresstion?

You should only be using linear regression if you have a reason to believe that there is a
linear relationship in your data. An example showing the importance of looking at your data
and looking at the residuals is given by Anscombe’s quartet1. The quartet consists of four

1Figure from Wikipedia.
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datasets that all have the same line of best fit, but are very different sets. The bottom two
problems have outliers that change the underlying relationship by a significant amount.

Confidence intervals

Suppose you have a dataset with variables x and y, and you want to fit a linear model:

y = β0 + β1x+ ε

To construct bootstrap confidence intervals for the parameters of a line of best fit, you
can follow these steps:

1. Fit the Original Model:

Fit the linear model to your original dataset to obtain the estimates of the parameters
β̂0 and β̂1.

2. Bootstrap Resampling:

Perform the following steps a large number of times (e.g., 1000 or more iterations):

� Resample your dataset with replacement to create a bootstrap sample of the same
size as the original dataset.

� Fit the linear model to this bootstrap sample to obtain new estimates of the
parameters, β̂∗

0 and β̂∗
1 .

� Save the estimates in a vector or matrix.

3. Construct Confidence Intervals:
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� For each parameter we have a vector of estimates from the last step. Sort them.

� To construct a 95% confidence interval, find the 2.5th percentile and the 97.5th
percentile of the sorted bootstrap estimates for each parameter. These percentiles
serve as the lower and upper bounds of the confidence interval.

Here is some Matlab pseudo-code to generate a bootstrap confidence intervals for the
slope and intercept.

% Original data

x = [your x data];

y = [your y data];

% Number of bootstrap samples

B = 1000;

% Fit the original linear model

p = polyfit(x, y, 1);

beta_0 = p(2);

beta_1 = p(1);

% Initialize arrays to store bootstrap estimates

beta_0_star = zeros(B, 1);

beta_1_star = zeros(B, 1);

n = length(x);

% Bootstrap procedure

for b = 1:B

% Sample with replacement

indices = randi(n, n, 1);

x_star = x(indices);

y_star = y(indices);

% Fit model to bootstrap sample

p_star = polyfit(x_star, y_star, 1);

beta_0_star(b) = p_star(2);

beta_1_star(b) = p_star(1);

end

% Compute confidence intervals

beta_0_ci = quantile(beta_0_star, [0.025, 0.975]);

beta_1_ci = quantile(beta_1_star, [0.025, 0.975]);
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% Display results

fprintf(’95%% Confidence interval for beta_0:\n’);

fprintf(’ [%f, %f]\n’, beta_0_ci(1), beta_0_ci(2));

fprintf(’95%% Confidence interval for beta_1:\n’

fprintf(’ [%f, %f]\n’, beta_1_ci(1), beta_1_ci(2));

Explanation

� polyfit is used to fit a linear model y = β0 + β1x.

� randi is used to generate a vector of random indices for resampling with replacement.

� quantile computes the desired percentiles to form the confidence intervals.

� The confidence intervals are then displayed for both the intercept (β0) and slope (β1).

Replace [your x data] and [your y data] with your actual data vectors.

8


