Chapter 3

Linear Algebra Fundamentals

It can be argued that all of linear algebra can be understood using the *four fundamental subspaces* associated with a matrix. Because they form the foundation on which we later work, we want an explicit method for analyzing these subspaces- That method will be the *Singular Value Decomposition* (SVD). It is unfortunate that most first courses in linear algebra do not cover this material, so we do it here. Again, we cannot stress the importance of this decomposition enough- We will apply this technique throughout the rest of this text.

3.1 Representation, Basis and Dimension

Let us quickly review some notation and basic ideas from linear algebra:

Suppose that the matrix V is composed of the columns v_1, \ldots, v_k , and that these columns form a basis basis for some subspace, H, in \mathbb{R}^n (notice that this implies $k \leq n$). Then every data point in H can be written as a linear combination of the basis vectors. In particular, if $x \in H$, then we can write:

$$\boldsymbol{x} = c_1 \boldsymbol{v}_1 + \ldots + c_k \boldsymbol{v}_k \doteq V \boldsymbol{c}$$

so that every data point in our subset of \mathbb{R}^n is identified with a point in \mathbb{R}^k :

$oldsymbol{x}=$	$\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}$	\longleftrightarrow	$\left[\begin{array}{c}c_1\\\vdots\\c_k\end{array}\right]$	= c
	λ_n			

The vector c, which contains the coordinates of x, is the low dimensional representation of the point x. That is, the data point x resides in \mathbb{R}^n , but c is in \mathbb{R}^k , where $k \leq n$.

Furthermore, we would say that the subspace H (a subspace of \mathbb{R}^n) is *isomorphic* to \mathbb{R}^k . We'll recall the definition:

Definition 3.1.1. Any one-to-one (and onto) linear map is called an isomorphism. In particular, any change of coordinates is an isomorphism. Spaces that are isomorphic have essentially the same algebraic structure-adding vectors in one space is corresponds to adding vectors in the second space, and scalar multiplication in one space is the same as scalar multiplication in the second.

Definition 3.1.2. Let H be a subspace of vector space X. Then H has dimension k if a basis for H requires k vectors.

Given a linearly independent spanning set (the columns of V) to compute the coordinates of a data point with respect to that basis requires a matrix inversion (or more generally, Gaussian elimination) to solve the equation:

$$x = Vc$$

In the case where we have n basis vectors of \mathbb{R}^n , then V is an invertible matrix, and we write:

$$\boldsymbol{c} = V^{-1} \boldsymbol{x}$$

If we have fewer than n basis vectors, V will not be square, and thus not invertible in the usual sense. However, if x is contained in the span of the basis, then we will be able to solve for the coordinates of x.

Example 3.1.1. Let the subspace H be formed by the span of the vectors v_1, v_2 given below. Given the point x_1, x_2 below, find which one belongs to H, and if it does, give its coordinates.

$$oldsymbol{v}_1 = egin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 $oldsymbol{v}_2 = egin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ $oldsymbol{x}_1 = egin{bmatrix} 7 \\ 4 \\ 0 \end{bmatrix}$ $oldsymbol{x}_2 = egin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$

SOLUTION: Rather than row-reduce twice, we'll do it once on the augmented matrix below.

1	2	7	4		1	0	3	2
2	$^{-1}$	4	3	\rightarrow	0	1	2	1
1	1	0	-1		0	0	1	0

How should this be interpreted? The second vector, \boldsymbol{x}_2 is in H, as it can be expressed as $2\boldsymbol{v}_1 + \boldsymbol{v}_2$. Its low dimensional representation (its coordinate vector) is thus $[2, 1]^T$.

The first vector, x_1 , cannot be expressed as a linear combination of v_1 and v_2 , so it does not belong to H.

If the basis is orthonormal, we do not need to perform any row reduction. Let us recall a few more definitions:

Definition 3.1.3. A real $n \times n$ matrix \mathbb{Q} is said to be *orthogonal* if

$$\mathbb{Q}^T \mathbb{Q} = I$$

This is the property that makes an orthonormal basis nice to work with- it's inverse is its transpose. Thus, it is easy to compute the coordinates of a vector \boldsymbol{x} with respect to this basis. That is, suppose that

$$\boldsymbol{x} = c_1 \boldsymbol{u}_1 + \ldots + c_k \boldsymbol{u}_k$$

Then the coordinate c_i is just a dot product:

$$\boldsymbol{x} \cdot \boldsymbol{u}_j = 0 + \ldots + 0 + c_j \boldsymbol{u}_j \cdot \boldsymbol{u}_j + 0 + \ldots 0 \quad \Rightarrow \quad c_j = \boldsymbol{x} \cdot \boldsymbol{u}_j$$

We can also interpret each individual coordinate as the projection of x onto the appropriate basis vector. Recall that the orthogonal projection of x onto a vector u is the following:

$$\operatorname{Proj}_{\boldsymbol{u}}(\boldsymbol{x}) = \frac{\boldsymbol{u} \cdot \boldsymbol{x}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}$$

If \mathbf{u} is unit length, the denominator is 1 and we have:

$$\operatorname{Proj}_{\boldsymbol{u}}(\boldsymbol{x}) = (\mathbf{u}^T \mathbf{x})\mathbf{u} = (\mathbf{u}\mathbf{u}^T)\mathbf{x} = \mathbf{u}(\mathbf{u}^T\mathbf{x})$$

Writing the coefficients in matrix form, with the columns of U being the orthonormal vectors forming the basis, we have:

$$\boldsymbol{c} = [\mathbf{x}]_U = U^T \boldsymbol{x}$$

Additionally, the **projection of** x onto the subspace spanned by the (orthonormal) columns of a matrix U is:

$$\operatorname{Proj}_{U}(\boldsymbol{x}) = U\boldsymbol{c} = UU^{T}\boldsymbol{x}$$
(3.1)

Example 3.1.2. We'll change our previous example slightly so that u_1 and u_2 are orthonormal. Find the coordinates of \mathbf{x}_1 with respect to this basis.

$$\boldsymbol{u}_1 = rac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix} \quad \boldsymbol{u}_2 = rac{1}{\sqrt{6}} \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \quad \boldsymbol{x}_1 = \begin{bmatrix} -1\\0\\2 \end{bmatrix}$$

SOLUTION:

$$\boldsymbol{c} = U^T \boldsymbol{x} \quad \Rightarrow \quad \boldsymbol{c} = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} & 0\\ 2/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} -1\\ 8\\ -2 \end{bmatrix} = \begin{bmatrix} 3\sqrt{5}\\ -2\sqrt{6} \end{bmatrix}$$

The reader should verify that this is accurate.

We summarize our discussion with the following theorem:

Representation Theorem. Suppose H is a subspace of \mathbb{R}^n with orthonormal basis vectors given by the k columns of a matrix U (so U is $n \times k$). Then, given $\mathbf{x} \in H$,

• The low dimensional representation of x with respect to U is the vector of coordinates, $c \in \mathbb{R}^k$:

$$\boldsymbol{c} = \boldsymbol{U}^T \boldsymbol{x}$$

• The **reconstruction** of x as a vector in \mathbb{R}^n is:

$$\hat{\boldsymbol{x}} = UU^T \boldsymbol{x}$$

where, if the subspace formed by U contains \boldsymbol{x} , then $\boldsymbol{x} = \hat{\boldsymbol{x}}$ - Notice in this case, the projection of \boldsymbol{x} into the columnspace of U is the same as \boldsymbol{x} .

This last point may seem trivial since we started by saying that $x \in U$, however, soon we'll be loosening that requirement.

Example 3.1.3. Let $\boldsymbol{x} = [3,2,3]^T$ and let the basis vectors be $\boldsymbol{u}_1 = \frac{1}{\sqrt{2}}[1,0,1]^T$ and let $\boldsymbol{u}_2 = [0,1,0]^T$. Compute the low dimensional representation of \boldsymbol{x} , and its reconstruction (to verify that \boldsymbol{x} is in the right subspace).

SOLUTION: The low dimensional representation is given by:

$$\boldsymbol{c} = \boldsymbol{U}^T \boldsymbol{x} = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2} \\ 2 \end{bmatrix}$$

And the reconstruction (verify the arithmetic) is:

$$\hat{\boldsymbol{x}} = UU^T \mathbf{x} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$$

For future reference, you might notice that UU^T is **not** the identity, but U^TU is the 2×2 identity:

$$U^{T}U = \left[\begin{array}{ccc} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{array} \right] \left[\begin{array}{ccc} 1/\sqrt{2} & 0 \\ 0 & 1 \\ 1/\sqrt{2} & 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Projections are important part of our work in modeling data- so much so that we'll spend a bit of time formalizing the ideas in the next section.

Figure 3.1: Projections P_1 and P_2 in the first and second graphs (respectively). Asterisks denote the original data point, and circles represent their destination, the projection of the asterisk onto the vector $[1, 1]^T$. The line segment follows the direction $P\boldsymbol{x} - \boldsymbol{x}$. Note that P_1 does not project in an orthogonal fashion, while the second matrix P_2 does.

3.2 Special Mappings: The Projectors

In the previous section, we looked at projecting one vector onto a subspace by using Equation 3.1. In this section, we think about the projection as a function whose domain and range will be subspaces of \mathbb{R}^n .

The defining equation for such a function comes from the idea that if one projects a vector, then projecting it again will leave it unchanged.

Definition 3.2.1. A *Projector* is a square matrix \mathbb{P} so that:

 $\mathbb{P}^2 = \mathbb{P}$

In particular, $\mathbb{P}\boldsymbol{x}$ is the projection of \boldsymbol{x} .

Example 3.2.1. The following are two projectors. Their matrix representations are given by:

$$P_1 = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix} \qquad P_2 = \frac{1}{2} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$$

Some samples of the projections are given in Figure 3.1, where we see that both project to the subspace spanned by $[1,1]^T$.

Let's consider the action of these matrices on an arbitrary point:

$$P_{1}\boldsymbol{x} = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} x\\ x \end{bmatrix}, P_{1}(P_{1}\boldsymbol{x}) = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix} \begin{bmatrix} x\\ x \end{bmatrix} = \begin{bmatrix} x\\ x \end{bmatrix}$$
$$P_{2}\boldsymbol{x} = \frac{1}{2} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} \frac{x+y}{2}\\ \frac{x+y}{2} \end{bmatrix} = \frac{x+y}{2} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

You should verify that $P_2^2 \boldsymbol{x} = P_2(P_2(\boldsymbol{x})) = \boldsymbol{x}$.

You can deduce along which direction a point is projected by drawing a straight line from the point x to the point $\mathbb{P}x$. In general, this direction will depend on the point. We denote this direction by the vector $\mathbb{P}x - x$.

From the previous examples, we see that $\mathbb{P}x - x$ is given by:

$$P_1 \boldsymbol{x} - \boldsymbol{x} = \begin{bmatrix} 0 \\ x - y \end{bmatrix}$$
, and $P_2 \boldsymbol{x} - \boldsymbol{x} = \begin{bmatrix} \frac{-x + y}{2} \\ \frac{x - y}{2} \end{bmatrix} = \frac{x - y}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

You'll notice that in the case of P_2 , $P_2 \boldsymbol{x} - \boldsymbol{x} = (P_2 - I)\boldsymbol{x}$ is orthogonal to $P_2 \boldsymbol{x}$.

Definition 3.2.2. \mathbb{P} is said to be an *orthogonal* projector if it is a projector, and the range of \mathbb{P} is orthogonal to the range of $(I - \mathbb{P})$. We can show orthogonality by taking an arbitrary point in the range, $\mathbb{P}x$ and an arbitrary point in $(I - \mathbb{P})$, $(I - \mathbb{P})y$, and show the dot product is 0.

There is a property of real projectors that make them nice to work with: They are also symmetric matrices:

Theorem 3.2.1. The (real) projector \mathbb{P} is an orthogonal projector iff $\mathbb{P} = \mathbb{P}^T$. For a proof, see for example, [36].

Caution: An orthogonal projector need not be an orthogonal matrix. Notice that the projector P_2 from Figure 3.1 was not an orthogonal matrix (that is, $P_2P_2^T \neq I$).

We have two primary sources for projectors:

Projecting to a vector: Let a be an arbitrary, real, non-zero vector. We show that

$$\mathbb{P}_{\boldsymbol{a}} = \frac{\boldsymbol{a} \boldsymbol{a}^T}{\|\boldsymbol{a}\|^2}$$

is a rank one orthogonal projector onto the span of a:

- The matrix aa^T has rank one, since every column is a multiple of a.
- The given matrix is a projector:

$$\mathbb{P}^2 = rac{oldsymbol{a}oldsymbol{a}^T}{\|oldsymbol{a}\|^2} \cdot rac{oldsymbol{a}oldsymbol{a}^T}{\|oldsymbol{a}\|^2} = rac{1}{\|oldsymbol{a}\|^4}oldsymbol{a}(oldsymbol{a}^Toldsymbol{a})oldsymbol{a}^T = rac{oldsymbol{a}oldsymbol{a}^T}{\|oldsymbol{a}\|^2} = \mathbb{P}$$

• The matrix is an orthogonal projector, since $\mathbb{P}^T = \mathbb{P}$.

Projecting to a Subspace: Let $Q = [q_1, q_2, \dots, q_k]$ be a matrix with orthonormal columns. Then

$$\mathbb{P} = QQ^T$$

is an orthogonal projector to the column space of Q. This generalizes the result of the previous exercise. Note that if Q was additionally a square matrix, $QQ^T = I$.

Note that this is exactly the property that we discussed in the last example of the previous section.

Exercises

1. Show that the plane H defined by:

$$H = \left\{ \alpha_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \text{ such that } \alpha_1, \alpha_2 \in \mathbb{R} \right\}$$

is isormorphic to \mathbb{R}^2 .

2. Let the subspace G be the plane defined below, and consider the vector \boldsymbol{x} , where:

$$G = \left\{ \alpha_1 \begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix} \text{ such that } \alpha_1, \alpha_2 \in \mathbb{R} \right\} \qquad \mathbf{x} = \begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix}$$

- (a) Find the projector P that takes an arbitrary vector and projects it (orthogonally) to the plane G.
- (b) Find the orthogonal projection of the given \boldsymbol{x} onto the plane G.

- (c) Find the distance from the plane G to the vector \boldsymbol{x} .
- 3. If the low dimensional representation of a vector \boldsymbol{x} is $[9, -1]^T$ and the basis vectors are $[1, 0, 1]^T$ and $[3, 1, 1]^T$, then what was the original vector \boldsymbol{x} ? (HINT: it is easy to compute it directly)
- 4. If the vector $\boldsymbol{x} = [10, 4, 2]^T$ and the basis vectors are $[1, 0, 1]^T$ and $[3, 1, 1]^T$, then what is the low dimensional representation for \boldsymbol{x} ?
- 5. Let $\boldsymbol{a} = [-1,3]^T$. Find a square matrix P so that $P\boldsymbol{x}$ is the orthogonal projection of \boldsymbol{x} onto the span of \boldsymbol{a} .

3.3 The Four Fundamental Subspaces

Given any $m \times n$ matrix A, we consider the mapping $A : \mathbb{R}^n \to \mathbb{R}^m$ by:

$$x \to Ax = y$$

The four subspaces allow us to completely understand the domain and range of the mapping. We will first define them, then look at some examples.

Definition 3.3.1. The Four Fundamental Subspaces

• The row space of A is a subspace of \mathbb{R}^n formed by taking all possible linear combinations of the rows of A. Formally,

$$\operatorname{Row}(A) = \left\{ \boldsymbol{x} \in \mathbb{R}^n \, | \, \boldsymbol{x} = A^T \boldsymbol{y} \; \boldsymbol{y} \in \mathbb{R}^m \right\}$$

• The **null space** of A is a subspace of \mathbb{R}^n formed by

$$Null(A) = \{ \boldsymbol{x} \in \mathbb{R}^n \, | \, A\boldsymbol{x} = \boldsymbol{0} \}$$

• The column space of A is a subspace of \mathbb{R}^m formed by taking all possible linear combinations of the columns of A.

$$\operatorname{Col}(A) = \{ \boldsymbol{y} \in \mathbb{R}^m \, | \, \boldsymbol{y} = A \boldsymbol{x} \in \mathbb{R}^n \}$$

The column space is also the image of the mapping. Notice that Ax is simply a linear combination of the columns of A:

$$A\boldsymbol{x} = x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \dots + x_n\boldsymbol{a}_n$$

• Finally, we define the **null space** of A^T can be defined in the obvious way (see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping in a particularly nice way:

Theorem 3.3.1. Let A be an $m \times n$ matrix. Then

- The nullspace of A is orthogonal to the row space of A
- The nullspace of A^T is orthogonal to the columnspace of A

Proof: See the Exercises.

Before going further, let us recall how to construct a basis for the column space, row space and nullspace of a matrix A. We'll do it with a particular matrix:

Example 3.3.1. Construct a basis for the column space, row space and nullspace of the matrix A below:

$$A = \begin{bmatrix} 2 & 0 & -2 & 2 \\ -2 & 5 & 7 & 3 \\ 3 & -5 & -8 & -2 \end{bmatrix}$$