
Chapter 3

Linear Algebra Fundamentals

It can be argued that all of linear algebra can be understood using the four fundamental subspaces associated
with a matrix. Because they form the foundation on which we later work, we want an explicit method for
analyzing these subspaces- That method will be the Singular Value Decomposition (SVD). It is unfortunate
that most first courses in linear algebra do not cover this material, so we do it here. Again, we cannot stress
the importance of this decomposition enough- We will apply this technique throughout the rest of this text.

3.1 Representation, Basis and Dimension

Let us quickly review some notation and basic ideas from linear algebra:
Suppose that the matrix V is composed of the columns v1, . . . ,vk, and that these columns form a basis

basis for some subspace, H, in IRn (notice that this implies k ≤ n). Then every data point in H can be
written as a linear combination of the basis vectors. In particular, if x ∈ H, then we can write:

x = c1v1 + . . .+ ckvk
.
= V c

so that every data point in our subset of IRn is identified with a point in IRk:

x =




x1

x2

...
xn


 ←→




c1
...

ck


 = c

The vector c, which contains the coordinates of x, is the low dimensional representation of the point x.
That is, the data point x resides in IRn, but c is in IRk, where k ≤ n.

Furthermore, we would say that the subspace H (a subspace of IRn) is isomorphic to IRk. We’ll recall
the definition:

Definition 3.1.1. Any one-to-one (and onto) linear map is called an isomorphism. In particular, any change
of coordinates is an isomorphism. Spaces that are isomorphic have essentially the same algebraic structure-
adding vectors in one space is corresponds to adding vectors in the second space, and scalar multiplication
in one space is the same as scalar multiplication in the second.

Definition 3.1.2. Let H be a subspace of vector space X. Then H has dimension k if a basis for H requires
k vectors.

Given a linearly independent spanning set (the columns of V ) to compute the coordinates of a data point
with respect to that basis requires a matrix inversion (or more generally, Gaussian elimination) to solve the
equation:

x = V c
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In the case where we have n basis vectors of IRn, then V is an invertible matrix, and we write:

c = V −1x

If we have fewer than n basis vectors, V will not be square, and thus not invertible in the usual sense.
However, if x is contained in the span of the basis, then we will be able to solve for the coordinates of x.

Example 3.1.1. Let the subspace H be formed by the span of the vectors v1,v2 given below. Given the
point x1,x2 below, find which one belongs to H, and if it does, give its coordinates.

v1 =




1
2

−1


 v2 =




2
−1
1


 x1 =




7
4
0


 x2 =




4
3

−1




SOLUTION: Rather than row-reduce twice, we’ll do it once on the augmented matrix below.




1 2 7 4
2 −1 4 3

−1 1 0 −1


 →




1 0 3 2
0 1 2 1
0 0 1 0




How should this be interpreted? The second vector, x2 is in H, as it can be expressed as 2v1 + v2. Its low
dimensional representation (its coordinate vector) is thus [2, 1]T .

The first vector, x1, cannot be expressed as a linear combination of v1 and v2, so it does not belong to
H.

If the basis is orthonormal, we do not need to perform any row reduction. Let us recall a few more
definitions:

Definition 3.1.3. A real n× n matrix Q is said to be orthogonal if

QTQ = I

This is the property that makes an orthonormal basis nice to work with- it’s inverse is its transpose.
Thus, it is easy to compute the coordinates of a vector x with respect to this basis. That is, suppose that

x = c1u1 + . . .+ ckuk

Then the coordinate cj is just a dot product:

x · uj = 0 + . . .+ 0 + cjuj · uj + 0 + . . . 0 ⇒ cj = x · uj

We can also interpret each individual coordinate as the projection of x onto the appropriate basis vector.
Recall that the orthogonal projection of x onto a vector u is the following:

Proju(x) =
u · x
u · uu

If u is unit length, the denominator is 1 and we have:

Proju(x) = (uTx)u = (uuT )x = u(uTx)

Writing the coefficients in matrix form, with the columns of U being the orthonormal vectors forming
the basis, we have:

c = [x]U = UTx

Additionally, the projection of x onto the subspace spanned by the (orthonormal) columns of a matrix U
is:

ProjU (x) = Uc = UUTx (3.1)
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Example 3.1.2. We’ll change our previous example slightly so that u1 and u2 are orthonormal. Find the
coordinates of x1 with respect to this basis.

u1 =
1√
5




1
2
0


 u2 =

1√
6




2
−1
1


 x1 =




−1
0
2




SOLUTION:

c = UTx ⇒ c =

�
1/
√
5 2/

√
5 0

2/
√
6 −1/

√
6 1/

√
6

�


−1
8

−2


 =

�
3
√
5

−2
√
6

�

The reader should verify that this is accurate.

We summarize our discussion with the following theorem:

Representation Theorem. Suppose H is a subspace of IRn with orthonormal basis vectors given by the
k columns of a matrix U (so U is n× k). Then, given x ∈ H,

� The low dimensional representation of x with respect to U is the vector of coordinates, c ∈ IRk:

c = UTx

� The reconstruction of x as a vector in IRn is:

x̂ = UUTx

where, if the subspace formed by U contains x, then x = x̂- Notice in this case, the projection of x
into the columnspace of U is the same as x.

This last point may seem trivial since we started by saying that x ∈ U , however, soon we’ll be loosening
that requirement.

Example 3.1.3. Let x = [3, 2, 3]T and let the basis vectors be u1 = 1√
2
[1, 0, 1]T and let u2 = [0, 1, 0]T .

Compute the low dimensional representation of x, and its reconstruction (to verify that x is in the right
subspace).

SOLUTION: The low dimensional representation is given by:

c = UTx =

�
1/
√
2 0 1/

√
2

0 1 0

�


3
2
3


 =

�
3
√
2

2

�

And the reconstruction (verify the arithmetic) is:

x̂ = UUTx =




1/2 0 1/2
0 1 0

1/2 0 1/2






3
2
3


 =




3
2
3




For future reference, you might notice that UUT is not the identity, but UTU is the 2× 2 identity:

UTU =

�
1/
√
2 0 1/

√
2

0 1 0

�


1/
√
2 0
0 1

1/
√
2 0


 =

�
1 0
0 1

�

Projections are important part of our work in modeling data- so much so that we’ll spend a bit of time
formalizing the ideas in the next section.
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Figure 3.1: Projections P1 and P2 in the first and second graphs (respectively). Asterisks denote the original
data point, and circles represent their destination, the projection of the asterisk onto the vector [1, 1]T . The
line segment follows the direction Px−x. Note that P1 does not project in an orthogonal fashion, while the
second matrix P2 does.

3.2 Special Mappings: The Projectors

In the previous section, we looked at projecting one vector onto a subspace by using Equation 3.1. In this
section, we think about the projection as a function whose domain and range will be subspaces of IRn.

The defining equation for such a function comes from the idea that if one projects a vector, then projecting
it again will leave it unchanged.

Definition 3.2.1. A Projector is a square matrix P so that:

P2 = P

In particular, Px is the projection of x.

Example 3.2.1. The following are two projectors. Their matrix representations are given by:

P1 =

�
1 0
1 0

�
P2 =

1

2

�
1 1
1 1

�

Some samples of the projections are given in Figure 3.1, where we see that both project to the subspace
spanned by [1, 1]T .

Let’s consider the action of these matrices on an arbitrary point:

P1x =

�
1 0
1 0

� �
x
y

�
=

�
x
x

�
, P1(P1x) =

�
1 0
1 0

� �
x
x

�
=

�
x
x

�

P2x =
1

2

�
1 1
1 1

� �
x
y

�
=

�
x+y
2

x+y
2

�
=

x+ y

2

�
1
1

�

You should verify that P 2
2x = P2(P2(x)) = x.

You can deduce along which direction a point is projected by drawing a straight line from the point x
to the point Px. In general, this direction will depend on the point. We denote this direction by the vector
Px− x.

From the previous examples, we see that Px− x is given by:

P1x− x =

�
0

x− y

�
, and P2x− x =

� −x+y
2

x−y
2

�
=

x− y

2

�
−1
1

�

You’ll notice that in the case of P2, P2x− x = (P2 − I)x is orthogonal to P2x.
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Definition 3.2.2. P is said to be an orthogonal projector if it is a projector, and the range of P is orthogonal
to the range of (I − P). We can show orthogonality by taking an arbitrary point in the range, Px and an
arbitrary point in (I − P), (I − P)y, and show the dot product is 0.

There is a property of real projectors that make them nice to work with: They are also symmetric
matrices:

Theorem 3.2.1. The (real) projector P is an orthogonal projector iff P = PT . For a proof, see for example,
[36].

Caution: An orthogonal projector need not be an orthogonal matrix. Notice that the projector P2 from
Figure 3.1 was not an orthogonal matrix (that is, P2P

T
2 �= I).

We have two primary sources for projectors:
Projecting to a vector: Let a be an arbitrary, real, non-zero vector. We show that

Pa =
aaT

�a�2

is a rank one orthogonal projector onto the span of a:

� The matrix aaT has rank one, since every column is a multiple of a.

� The given matrix is a projector:

P2 =
aaT

�a�2 · aa
T

�a�2 =
1

�a�4a(a
Ta)aT =

aaT

�a�2 = P

� The matrix is an orthogonal projector, since PT = P.

Projecting to a Subspace: Let Q = [q1, q2, . . . , qk] be a matrix with orthonormal columns. Then

P = QQT

is an orthogonal projector to the column space of Q. This generalizes the result of the previous exercise.
Note that if Q was additionally a square matrix, QQT = I.

Note that this is exactly the property that we discussed in the last example of the previous section.

Exercises

1. Show that the plane H defined by:

H =



α1




1
1
1


+ α2




1
−1
0


 such that α1,α2 ∈ IR





is isormorphic to IR2.

2. Let the subspace G be the plane defined below, and consider the vector x, where:

G =



α1




1
3

−2


+ α2




3
−1
0


 such that α1,α2 ∈ IR



 x =




1
0
2




(a) Find the projector P that takes an arbitrary vector and projects it (orthogonally) to the plane G.

(b) Find the orthogonal projection of the given x onto the plane G.
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(c) Find the distance from the plane G to the vector x.

3. If the low dimensional representation of a vector x is [9,−1]T and the basis vectors are [1, 0, 1]T and
[3, 1, 1]T , then what was the original vector x? (HINT: it is easy to compute it directly)

4. If the vector x = [10, 4, 2]T and the basis vectors are [1, 0, 1]T and [3, 1, 1]T , then what is the low
dimensional representation for x?

5. Let a = [−1, 3]T . Find a square matrix P so that Px is the orthogonal projection of x onto the span
of a.

3.3 The Four Fundamental Subspaces

Given any m× n matrix A, we consider the mapping A : IRn → IRm by:

x → Ax = y

The four subspaces allow us to completely understand the domain and range of the mapping. We will first
define them, then look at some examples.

Definition 3.3.1. The Four Fundamental Subspaces

� The row space of A is a subspace of IRn formed by taking all possible linear combinations of the rows
of A. Formally,

Row(A) =
�
x ∈ IRn |x = ATy y ∈ IRm

�

� The null space of A is a subspace of IRn formed by

Null(A) = {x ∈ IRn |Ax = 0}

� The column space of A is a subspace of IRm formed by taking all possible linear combinations of the
columns of A.

Col(A) = {y ∈ IRm | y = Ax ∈ IRn}
The column space is also the image of the mapping. Notice that Ax is simply a linear combination of
the columns of A:

Ax = x1a1 + x2a2 + · · ·+ xnan

� Finally, we define the null space of AT can be defined in the obvious way (see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping in a particularly nice way:

Theorem 3.3.1. Let A be an m× n matrix. Then

� The nullspace of A is orthogonal to the row space of A

� The nullspace of AT is orthogonal to the columnspace of A

Proof: See the Exercises.
Before going further, let us recall how to construct a basis for the column space, row space and nullspace

of a matrix A. We’ll do it with a particular matrix:

Example 3.3.1. Construct a basis for the column space, row space and nullspace of the matrix A below:

A =




2 0 −2 2
−2 5 7 3
3 −5 −8 −2



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