
Chapter 1

Getting Started

Where to use Matlab/Octave

Matlab physically resides on each of the computers in the Olin Hall labs. See your instructor if you
need an account on these machines.

Personal Copy of Matlab

If you are going to go to graduate school at some point, or if you think Matlab might be something
you will want a personal copy, Matlab is available to download from the Mathworks website. Its a
good deal- $99 for Matlab and 10 of the most used toolboxes (some of which we don’t have).

Free version is called Octave

There is a version of Matlab, called Octave, that is available on the internet via any web browser
(search for Octave online). This is a very convenient option if you just have a few computations to
make.

Lastly, Octave is also available for free to download to your home computer. As is often the
case with open source software, the documentation can be hard to read and help can be hard to
locate. In the past, Octave for the Mac has been tricky, so use it only if you’re pretty comfortable
tweaking a Mac. The Linux and Windows distributions are fairly reliable.

Of course, if you have any trouble putting Octave on your own machine, there’s always the Olin
Hall computer labs!

1.1 Setting up Matlab in Olin

When you first log in: Using a computer in the Math/CS lab, go to the upper left corner, and
choose the top icon on the launch pad. You should get a search dialog, so you can type:

matlab

You will then get the Matlab icon, so select that and Matlab will start. To keep the Matlab icon
on the launcher, go to the icon, right-click. In older Ubuntu versions, select “Lock to Launcher”,
in more recent versions, select something like “Copy to Favorites”.

5

Figure 1.1: The opening interface for Matlab (2018). The middle window is the command window,
and is where we type Matlab commands. The other windows are there to give us information about
the Workspace, the current directory, and a history of commands. Yours should be basically blank
at this point.

See Figure 1 to see the opening interface that you’ll use. You might take a few minutes to just
look around the interface- Try some different tabs and see what happens.

1.1.1 How does Matlab work?

You can make Matlab do computations three different ways:

• Type commands directly into the keyboard in the command window.

• Have your Matlab commands typed into a separate text file (called a script file), and then
have Matlab read these commands in. This is very nice- it gives you documentation and allows
you to run similar computations several times without having to re-type the commands. We
will typically use script files to do homework problems.

• Define your own functions by typing a separate text file (called an m-file).

Note that the difference between a function and a script is that the script simply executes
the commands that are listed. A function takes values in and produces some output. Both
scripts and functions end in *.m, but the very first line in a function is the word “function”.
We’ll construct both scripts and functions below.

Saving your work

Matlab keeps track of your past history while you are typing on the keyboard, but for answering
homework, it is best to use a script file, which is just a text file with Matlab commands on it. More
on this later.

6

Matlab has a very nice text editor that you can use to type out and save Matlab functions and
scripts- To access the editor, type edit in the Matlab command window.

For Octave online, we don’t have the editor option, but you can use any text editor. If the
problem is a short one, I may just ask you to submit a screenshot of your work.

1.2 Introductory Commands

On the left, we show the commands you can type in the command window, and to the right we
give some commentary. Matlab uses the standard mathematical operations:

1.2.1 Numbers

2+3;

123.3*sin(3.2)

If you leave the semicolon off the end of the line, Mat-
lab prints the result (this is OK when typing live, but
usually not good for scripts- We’ll see that later).

2^5;

exp(4);

cos(1.3);

log(3)

The function exp(x) is used for ex. Sine and cosine
assume the input is in radians. The logarithm assumes
natural log.

i^2

(1+i)*(2-i)

pi

exp(1)

The number i =
√
−1 is defined in Matlab- But only if

it hasn’t been defined by you to be anything else. The
constant π uses lowercase p (unlike Maple). To get the
constant e, use exp(1).

5/0

0/0

eps

In the first case, you’ll see Inf, which represents “in-
finity”. This is actually incorrect- It should be ±∞,
since we don’t know how the denominator is reach-
ing zero. In the second case, Matlab gives NaN, which
means “Not a Number”. Do you know why this would
be? (think limits). The last value is a very small num-
ber below which we typically would think of a quantity
as “zero”.

1.2.2 Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:

clear;

clc;

whos;

help

% Help for a specific command

help sin

doc

demo

The up arrow key is useful (try it!). Here we first clear
the workspace memory of all variables, and secondly
we clear the command window. Give the others a try
to see what they do. Notice that we can use a percent
sign to put in a comment (Comments are not processed
by Matlab).

7

1.3 Assigning values to variables

To assign data to a variable name, we would use the equal sign. For example, x = 3 assigns the
value of 3 to the variable x. The array (or matrix) is the basic data type in Matlab. Data entry is
straightforward.

A=[1 2 3 4; 5 6 7 8];

A=[1 2 3 4

5 6 7 8];

A(2,3)

A is an array with two rows and 4 columns and can be
entered in either manner. Inside an array, the semi-
colon indicates the end of a row. The (2, 3) element
(2d row, 3d column) of A is accessed as this.

x=[1;0;1]; y=[-1;2;3];

dot(x,y)

cross(x,y)

The dot product and cross product are available.

The dot

If we want to take an array of numbers and perform some operation to every value, we can use the
dot. Here are some examples of how this works:

x=[1,4,7,10];

x.^2

sin(x)

y=[2 3 4 5];

x./y

The array x is first formed, then we take the square
of each element. Similarly, the third line takes the
sine of each element. If we define y as another array
of the same size, we can “divide” x by y, where the
first element will be 1/2 = 0.5 and the last element is
10/5 = 2.

Special Commands: The colon operator

• a:b

Produces a vector of integers from a to b in a row.

• a:b:c

Produces the numbers from a to c by adding b each time” a, a + b, a + 2b, . . ., up until the
last number is biggest that is less than or equal to c.

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the number b (inclusive).

x=2:9;

y=1:2:8

z=10:-1.3:3

w=linspace(2,5,40);

w=linspace(2,5)

First, x is an array with the integers from 2 to 9. Sec-
ondly, y is array with integers 1, 3, 5, 7. Can you pre-
dict what z will be? The last line produces 40 numbers
evenly spaced beginning with 2 and ending with 5. If
we leave the third number off, we get 100 values as the
default.

8

Matlab commands associated with Arrays

• Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m× n array of random numbers (uniformly distributed) between
0 and 1. If you just want a single random number between 0 and 1, just type rand

A=randn(m,n) produces an m × n array of random numbers (with a normal distribution)
with zero mean and unit variance. If you want a single random number (with a normal
distribution), just type randn

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B by replicating B m
times down and n times across.

Example: Let B =

�
1 2
3 4

�
. Then A=repmat(B,2,3) creates the array:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Matrix Arithmetic

• Transposition is denoted by the single quote character ’. That is, A’ = AT . (CAUTION: If
A contains complex numbers, then A’ is the conjugate transpose of A, sometimes denoted as
A∗ = ĀT)

• Matrix addition and subtraction is performed automatically and is only defined for matrices
of the same size.

• Scalar addition. If we want to add a constant c to every item in an array A, type: A+c

• Scalar Multiplication: We can multiply every number in the array by a constant: If A is the
array and c is the constant, we would write: B=c*A

• Matrix Multiplication: Use the regular multiplication sign for standard matrix multiplication.
If A is m× n and B is n× p, then A*B is an m× p matrix, as we did in linear algebra.

• Elementwise Multiplication. We can multiply and divide the elements of an array A and an
array B elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an array A, we would
write: A.^2 This is the same as saying A.*A

9

• Functions applied to arrays: Matlab will automatically apply a given function to each element
of the array. For example, sin(A) will apply the sine function to each element of the array
A, and exp(A) will apply ex to each element of the array. If you write your own functions,
you should always decide ahead of time how you want the function to operate on a matrix.

1.4 More on Arrays

• Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m× n array of random numbers (uniformly distributed) between
0 and 1. If you just want a single random number between 0 and 1, just type rand

A=randn(m,n) produces an m × n array of random numbers (with a normal distribution)
with zero mean and unit variance. If you want a single random number (with a normal
distribution), just type randn

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B by replicating B m
times down and n times across.

Example: Let B =

�
1 2
3 4

�
. Then A=repmat(B,2,3) creates the array:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Accessing Submatrices

Let A be an m× n array of numbers. Then:
The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: What kind of an array would the following command produce?

10

A([1,3,6],[2,5])

A 3× 2 matrix consisting of the elements:

A(1, 2) A(1, 5)
A(3, 2) A(3, 5)
A(6, 2) A(6, 5)

Example: Create a 5× 5 zero array, and change it to:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

Answer:

A=zeros(5,5); %Create the matrix of zeros

b=[1 2 3;4 5 6; 7 8 9];

A(2:4,2:4)=b;

Note also the use of the % sign. It is used to denote comments; that is, Matlab would ignore
everything on the same line after the % sign.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix. Before doing it, we
define [] as ”the empty array”: the array with nothing in it.

In the following, let A be a 4× 5 array, let b be a 1× 5 row, and c be a 4× 1 column.
Examples of use (each of these are independent from the previous):
The command: Produces:

A(1,:)=[]; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete column 3.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as row 1.
A(:,6)=c; Add c as the last column.
d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.
A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.
A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

Example: Matlab comes with some built-in data sets. One such set is the image of a clown. For
fun, we’ll load the array in, display it, then we’ll remove all of the even rows and columns, then
re-display it:

X=load clown.mat

whos

X(4:6, 6:10) %Look at some of the values in the array X.

11

image(X);

colormap(map);

X(2:2:200,:)=[];

X(:,2:2:320)=[];

image(X);

Once you’re done, you may want to clear the memory and the screen:

clear

clc

If you want to re-do the clown again, you do not need to retype it! Use the up-arrow key to bring
back the commands you typed. You can also type the first few characters, then use the up-arrow
key:

X=(up arrow)

Solving Ax = b for x

To solve Ax = b for x, Matlab has two basic commands: x=A\b or x=pinv(A)*b. The command
pinv(A) computes the pseudoinverse of A, which we will discuss later in the section dealing with
the Singular Value Decomposition.

In linear algebra, there were three possible outcomes for solving Ax = b for x. They were:

1. A unique solution.

2. An infinite number of solutions.

3. No solution.

Matlab will always give exactly one solution. We need to interpret that solution in the second
two cases. In the case of an infinite number of solutions (we have free variables in this case, also
called an underdetermined system), the two methods may give different answers:

• x=A\b provides the most zeros in x.

• x=pinv(A)*b gives x with the smallest norm.

Example: Let A =

�
1 0 −2
0 1 1

�
, with b =

�
9
3

�
. Then the full solution is:

x =

9 + 2t
3− t

t

 (1.1)

In Matlab, the result of typing x=A\b is x = [0,−15/2,−9/2]T and the result of typing x=pinv(A)*b
is x = [4, 11/2,−5/2].

(MATLAB HINT: You can get Matlab to return numbers as fractions by typing format rat)
In the case of an overdetermined system (a system with no solution), Matlab will automatically

return the least squares solution- that is, the answer x∗ will be the minimum of �Ax− b�:

�Ax∗ − b� ≤ �Ax− b�, for all x

12

In general, you should always use the forward slash (for help, type help slash): x=A\b which
automatically determines a best numerical method. That is, sometimes its best (numerically) not
to explicitly compute the pseudoinverse first.

1.5 Exercise Set I

1. What is the Matlab command to create the array x which holds the integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be that zeros out the even-
numbered indices (That is, x(2), x(4), x(6), . . .)?

3. What is the difference in Matlab between typing: x=[1 2 3] and x=[1,2,3] and x=[1;2;3]?
What happens if you type a semicolon at the end of the commands (i.e., x=[1 2 3];)?

4. (Referring to the last question) For each of those, what happens if you type x.^2+3? What
happens if you forget the period (e.g., x^2+3)

5. What do the following commands do: x=2;3;6;, x=2:3:6;, a=2.3:0.5:3.5;

6. Describe the output for each of the following Matlab commands. Recall that typing a semi-
colon at the end of the line suppresses Matlab output- to see the results, leave off the semi-
colon.

A=rand(3,4);

A([1,2],3)=zeros(2,1);

B=sin(A);

C=B+6;

D=2*B’;

E=A./2;

F=sum(A.*A);

7. What will Matlab do if you type in:

A=rand(3,4);

A(:)

A(7)

NOTE: This is very bad programming style! Don’t do it unless you know what you’re doing!!

8. What is the Matlab command to perform the following:

(a) Given an array x, add 3 to each of its values.

(b) Given an array A, remove its first column and assign the result to a new array B.

9. What will the following code fragment do?

13

a=1:10;

for k=1:10

h=ceil(length(a)*rand);

b(k)=a(h);

a(h)=[];

end

Compare this with a=ceil(10*rand(10,1)) and a=randperm(10)

10. Use the Quick Summary sheet to help you write a code fragment that takes a random matrix
X and re-sorts the columns so that the first column has the smallest size and the last column
has the greatest size.

1.6 Exercise Set II

1. Let x be a row. What happens if you type plot(x)?

2. Write a Matlab script file to plot y = sin(x) in red, y = sin(2x) in black, and y = sin(3x) in
green, all on the same plot. You can assume that x ∈ [−4, 8].

3. When we compute with numbers, some errors can occur. Try typing each of the following
into Matlab, and see what happens:

• eps (This is machine epsilon)

• 1/0 (Think about what this means before trying it!)

• -1/0

• 0/0

• 1/Inf

• Inf+Inf, Inf-Inf, Inf/Inf, Inf/0

4. Try to reason out what you think Matlab will do with each of the following, then type it in
and record what you get:

x=[1 3 2 1 3];

max(x)

[vals, idx]=sort(x)

find(x==max(x))

mean(x)

sum(x)

5. Write a Matlab function that will take in two matrices A, B of the same dimensions, and will
output a matrix C so that

C(i, j) = max {A(i, j), B(i, j)}
The function will use the built-in max function- See Matlab’s help file by typing (in the
command window) doc max

14

6. What does this function do (think about what each line does individually; use the help
features in Matlab)? The input B is an m× n matrix.

function A=mystery(B)

[m,n]=size(B);

Temp=sqrt(sum(B.*B));

A=B./repmat(Temp,m,1);

(Hint: It is often very useful to have a matrix where each column has unit length).

15

