
the corresponding weight. We then sum those up and multiply by the derivative there. That is:

Δ
(i)
k = S

(i)
k

� Ni+1�

j=1

Δ
(i+1)
j W

(i+1)
jk

This may look complicated, but think of it in terms of the reverse affine map from IRNi+1 to IRNi . Then we
can compute all of the Δ�s in layer i all at once:

Δ(i) = ((W (i+1))TΔ(i+1)) .∗S(i)�

Somewhere a linear algebra teacher is crying. OK, so just to be crystal clear, our multiplication is not a dot
product, we are performing the multiplication (using the Matlab symbol .*) between two vectors element-
wise so the result is also a vector of the same size. Also to be very clear, let’s figure out the dimensions of

everything there: W (i+1) is Ni+1 ×Ni (so the transpose reverses those), Δ(i) has Ni+1 elements, and S(i)�

has Ni elements.

Once we reach the input layer, we’re done. Now what do we do with these Δ values? I like to use the
following memory device to help me remember how this goes. Below we see an edge, and we want to use the
state on the left and the Δ on the right with the edge and weight connecting the two.

Then here is the big conclusion:

Backpropagation of Error

ΔW
(k)
ij = S

(k−1)
j Δ

(k)
i (13.1)

The update rule for the weights is now (using gradient descent):

new W
(k)
ij = old W

(k)
ij + αΔW

(k)
ij

where the plus sign is not a typo, and α is the learning rate.

Thinking back, this kind of update rule was a lot like Widrow-Hoff, and in that case, we were able to
write the update using linear algebra so we could update weights all at once.

Update Rule Using Linear Algebra

Remember that matrix W (i) connects layer i− 1 to layer i, so that W (i) is Ni ×Ni−1. In our update rule,
we are taking states from layer i− 1 (so we have a vector with Ni−1 entries) and the deltas from layer i (so
that is a vector with Ni entries. To give away the punch line, if we take the outer product between these

150



two vectors (in the right order), we’ll have a matrix the same size as W (i). You should verify this works by
looking at the dimensions of the three objects below.

ΔW (i) = Δ(i)(S(i−1))T

And finally,

W (i)
new = W (i) + αΔW (i)

You might think we’re done, but there are still three big questions we have to answer:

1. These computations were for a single data point. What do I do with p data points?

2. Is this really gradient descent? Prove it!

3. Where did the bias terms go??

These questions will be answered in the next section, where we do actually show that our computations
do result in gradient descent.

13.6 Backprop Proved

The answer to the first question goes pretty quickly. With p data points, if we use the sum of squares as
the error, then each of the 4 numbers we computed per node should be summed over all the input (that’s
before the backward phase). Some people use the average error, and in that case, you would average each
of the 4 numbers over all the input.

For the second question, we’ll need to break out our Calculus. The function we want to minimize is
the error function. We’ll put a 1/2 in the front so we don’t have to deal with putting 2 in front of everything
when we differentiate.

E =
1

2

p�

i=1

�t(i) − y(i)�2

We’ll show that our rules do indeed produce the gradient descent. Recall that W l
mn connects node n in

the layer to the left to node m in the layer to the right. Therefore, Sl
m is the state of node m in layer l (to

the right of the edge labeled W l
mn). Using these relationships, we can write:

∂E

∂W l
mn

=
∂E

∂Sl
m

∂Sl
m

∂P l
m

∂P l
m

∂W l
mn

(13.2)

The two values on the right can readily be computed:

∂Sl
m

∂P l
m

= σ� �P l
m

� ∂P l
m

∂W l
mn

= Sl−1
n (13.3)

This leaves the first term which can be evaluated on the output layer L:

∂E

∂SL
m

=
∂E

∂ym
= (tm − ym)(−1)

On the rest of the layers, the term can be defined recursively,

∂E

∂Sl
m

=
�

j∈nextlayer

∂E

∂Sl+1
j

∂Sl+1
j

∂Sl
m

(13.4)

151



Since Sl+1
j = σ(P l+1

j ) = σ(W l+1
jm Sl

m + other terms), the derivative will be

∂Sl+1
j

∂Sl
m

= σ�(P l+1
m )W l+1

jm

Now we’ll connect up the two sets of notation:
Definition: We’ll define Δ as the product of the first two terms of Equation (13.2):

Δl
m = − ∂E

∂Sl
m

∂Sl
m

∂P l
m

= − ∂E

∂Sl
m

σ�(P l
m)

Therefore, on the output layer,

ΔL
m =

∂E

∂SL
m

∂SL
m

∂PL
m

= −(tm − ym)(−1)σ�(PL
m)

which matches Equation (??). Now, using Equation (13.4), the nodes on the previous layer are computed:

Δl
m = − ∂E

∂Sl
m

∂Sl
m

∂P l
m

=


 �

j∈layerl+1

− ∂E

∂Sl+1
j

∂Sl+1
j

∂Sl
m


σ�(P l

m) =

σ�(P l
m)


 �

j∈layerl+1

− ∂E

∂Sl+1
j

σ�(P l+1
m )W l+1

jm


 =

σ�(P l
m)


 �

j∈ layerl+1

Δl+1
j W l+1

jm




And this is Equation (??). Finally, by Equation (13.3), we can write:

− ∂E

∂W l
mn

=

�
− ∂E

∂Sl
m

∂Sl
m

∂P l
m

�
∂P l

m

∂W l
mn

= Δl
mSl−1

n

which proves that the update rule in Equation (13.1) is indeed gradient descent. Now for the second question:
How should we deal with bias terms?

For the bias term, we will add a node to each layer, but for these nodes, the state is the constant function,
S = σ(x) = 1, and the weight connecting this node to node k of the next layer could be labeled blk. That
also means that Δ for a bias node is 0, but now Equation (??) becomes:

blk = blk + �Δl
k

where the Δl
k is the value of Δ to the node to which blk is connected.

13.7 Simple Construction of a Feed Forward Neural Net

The neural net is simple to construct if we view it in terms of its layers.

� Initialize the n− k −m network:

Build the weights and biases with random numbers. Be sure to pay attention to dimensions.

W (1) is k × n b(1) is k × 1

W (2) is m× k b(2) is m× 1

152



� Compute the output of a neural net given the weights, biases. Here we’ll assume that the activation
function is σ(x), and has been determined. The computation proceeds in layers. For the three layer
network (layers 0, 1, and 2), we’ll have the series of computations. This is a forward pass:

– P (1) = W (1)x+ b(1)

– S(1) = σ(P (1)). Compute S(1)
�
as well.

– P (2) = W (2)S(1) + b(2)

– S(2) = P (1). Then S(1)
�
is a vector of ones. The output is S(2).

� A backwards pass for backpropagation of error:

– Δ(2) = (t− y) (This is a vector in IRm).

– Δ(1) = (W (2))TΔ(2) .* S(i)� (We use Matlab’s .* to denote elementwise mutliplication)

� Compute the changes to the weights and biases:

– ΔW (1) = Δ(1)xT

– ΔW (2) = Δ(2)(S(1))T

– Δb(1) = Δ(1)

– Δb(2) = Δ(2)

� Apply the changes:

W (1) = W (1) + αΔW (1), W (2) = W (2) + αΔW (2), b(1) = b(1) + αΔb(1) b(2) = b(2) + αΔb(2)

153


