
Multidimensional Newton’s Method

In multidimensional Newton’s Method, we’ll assume that we have a function y = f(x1, . . . , xn)
for which we’re trying to determine the roots of the gradient,

∇f(x) = ~0

In that case, the function file (Matlab or Python) for f should actually output three items:

� f(x) (which is a real number)

� ∇f(x) (which is a vector)

� Hf(x), or the Hessian of f , which is a matrix of all of the second derivatives of f :

(Hf(x)ij =
∂2f

∂xi∂xj
(x)

With that, recall that multidimensional Newton’s method for the gradient of f is given
by:

xi+1 = xi −Hf−1(xi)(∇f(x))T

(where we’re assuming the gradient is a row, so the transpose as shown above is a column).

Computations

For numerical stability, it is often recommended that we don’t actually compute the inverse
matrix. Rather, consider the following: If we define a new vector δ to be our update term:

~δ = Hf−1(xi)∇f(xi)
T

Then the vector solves the system of equations:

Hf(xi)~δ = ∇f(xi)
T

(again, the right hand side of the equation is a column vector). So in the code, you’ll see us
solving this equation.

Here’s the code for that

function out=MultiNewton(F,x0,numits,tol)

for k=1:numits

[g,gradg,hessg]=F(x0);

if cond(hessg)>1000000

error(’The Hessian Matrix is not invertible’);

end

1

delta=hessg\gradg; % Assumes gradg is a column vector

xnew=x0-delta;

d=norm(gradg);

if d<tol

out=xnew;

break

end

x0=xnew;

end

fprintf(’Newton used %d iterations\n’,k);

out=xnew;

Here’s a quick example. First, the function file:

function [y,dy,hy]=testfunc(x)

% A test function for Newton’s Method:

% The input is the VECTOR x (with elements x,y below)

%

% y = (1/4)x^4-(1/2)x^2+(1/2)y^2

% dy = Gradient = [x^3-x; y] (The gradient will output as a COLUMN)

% hy = Hessian = [3x^2-1, 0;0,1]

y=(1/4)*x(1)^4-(1/2)*x(1)^(2)+(1/2)*x(2)^2;

dy=[x(1)^3-x(1); x(2)];

hy=[3*x(1)^2-1, 0;0,1];

Now the function call would be something like

yout=MultiNewton(@testfunc,[-3;2],100,1e-6);

And the output will be: “Newton used 8 iterations”, and yout would be (−1, 0).

Example in Python

import numpy as np

def f(z):

x, y = z

w=(1/4)*x**4-(1/2)*x**2+(1/2)*y**2

dw=np.array([x**3-x, y])

2

hw=np.array([

[3*x**2-1,0],

[0,1]

])

return w, dw, hw

def newton_method(f, grad_f, hess_f, x0, tol=1e-6, max_iter=20):

x = np.array(x0, dtype=float)

for i in range(max_iter):

g, gradg, hessg = f(x)

if np.linalg.cond(hessg)>1000000

print(f"Error- Hessian is not invertible")

return x

if np.linalg.norm(grad) < tol:

print(f"Converged in {i} iterations")

return x

delta = np.linalg.solve(hess, grad)

x = x - delta

print(f"Iter {i+1}: x = {x}, f(x) = {f(x)}")

print("Did not converge")

return x

Initial guess

x0 = [2.0, 2.0]

minimum = newton_method(f, grad_f, hess_f, x0)

print(f"Found minimum at {minimum}, f(x) = {f(minimum)}")

3

