
Addition to Chapter 13

(Some portions of this document were AI generated and edited)

Useful information for training neural nets

We’ve focused on certain transfer (activation) functions, primarily the sigmoidal (logsig) and
the ReLU. Another important function that acts on a layer of the neural net is the “softmax”
function. This will be discussed below.

Additionally, probably the most popular optimizers for the neural net are “Adam” and
“RMSProp”, and we’ll discuss those as well.

Finally, we’ll summarize the forward and backward pass so that you can implement a
simple feedforward net on your own.

The softmax function

When we’re classifying functions, we typically use the columns of the identity matrix as our
targets. However, the output of the neural net will not be 0’s and 1’s, but a continuum of
real numbers. We could simply find which output cell is the maximum, and then convert the
vector into all zeros except for that coordinate. However, we may want to analyze the output
to try to determine what the neural net is responding to (or, what it is not responding to,
if our error is not small enough).

Therefore, we want to convert a set of m real numbers into a set of m probabilities. If
the output was all positive, then we could simply normalize the output. For example,

(3, 1, 5) ⇒
(

3

3 + 1 + 5
,

1

3 + 1 + 5
,

5

3 + 1 + 5

)
= (1/3, 1/9, 5/9)

We could then set a value so that if the probabilities are all below that threshold, then the
network is undecided, or we could make the maximum be 1, and the rest be zero- But we
do now have the option of getting a better idea of what the neural net is doing.

What happens if all of the values in your network output are NOT all non-negative?
This is where “softmax” really comes in (although softmax is normally employed even if the
outputs are all positive).

Softmax will convert the numbers using the exponential function first (which maps them
all to (0,∞)), then normalizes the vector. Suppose our vector output is (−1, 1, 3). Then
softmax performs the following computations:

(−1, 1, 3) ⇒
(

e−1

e−1 + e1 + e3
,

e1

e−1 + e1 + e3
,

e1

e−1 + e1 + e3

)

1



In Matlab, we would compute this as:

x=[-1 1 3];

out = exp(x)/sum(exp(x))

In Python, we compute this as:

import numpy as np

x = np.array([-1, 1, 3])

out = np.exp(x) / np.sum(np.exp(x))
Which gives (0.0158, 0.117, 0.867). In this case, we can say that the target is most likely

(0, 0, 1) (and we can put a probability on it).
We can think of the softmax function as an approximation to the argmax function (which

returns a 1 where the vector has a max element, and zeros elsewhere).

Other optimization concerns

Adding Momentum to SGD

Plain SGD can be slow and unstable due to oscillations. Momentum is meant to help
accelerate gradients in the right direction and dampen oscillations. Instead of updating
parameters solely based on the current gradient, momentum accumulates a velocity vector
that exponentially decays previously computed gradients:

vt = βvt−1 + (1− β)∇θJ(θt)

θt+1 = θt − αvt

Where:

� θt is the parameter at iteration t (θ would typically be a weight or bias term of the
neural net).

� α is the learning rate

� vt is the velocity (momentum term). Rather than being the gradient vector itself, our
velocity is a convex combination of the current gradient and the “velocity” used in the
past.

� β is the momentum coefficient, typically around 0.9

To give you an idea of that convex combination, let’s look at what happens for a one-
dimensional function y = f(x), starting at x = a, β = 0.9.

� Step 1: v1 = 0.9 · 0 + 0.1 · f ′(a) and a1 = a− α · v1.

� Step 2: v2 = 0.9 · v1 + 0.1 · f ′(a1) and a2 = a1 − αcdotv2.

And so on. We see that vt is a quantity that “remembers” the past gradients.
As a numerical example, suppose we want to minimize f(x, y) = x2 + 10y2. Then with

parameters:

2



� Learning rate: 0.1

� Starting point: (−3, 3)

� β for momentum: β = 0.9.

� For the momentum equation, set v0 = ~0.

In the plot below, we see the contour plots for f , and the trajectories. The blue trajectory
which oscillates is regular gradient descent. The red trajectory which is smooth, is gradient
descent with momentum. (The Matlab code for this example is attached at the end if you’d
like the details).

RMSprop

RMSProp is short for “Root Mean Squared Propagation”.

As we’ve seen, problems with gradient descent include:

� Oscillations in directions with steep gradients.

� Uniform learning rate for all parameters.

RMSprop addresses these issues by adapting the learning rate for each parameter based
on the history of gradients. The way it does this is based on a moving average of the
squared gradients. The notation you see below is common- The E stands for “expected
value”, which for us is the average. The gt term is the gradient at step t.

3



RMSProp maintains an exponentially decaying average E[g2]t, updates the learning rate,
and also scales the update. Also just to be clear, when you see a vector being squared, that
means it is done element-wise.

E[g2]t = γE[g2]t−1 + (1− γ)g2t

θt+1 = θt −
η√

E[g2]t + ε
gt

where:

� gt = ∇θJ(θt) is the gradient at time t,

� γ is the decay rate (e.g., 0.9),

� ε is a small constant (e.g., 10−8) to avoid division by zero.

This may look the same as gradient descent with momentum. Here’s a comparison:

Feature Gradient Descent with
Momentum

RMSProp

Idea Uses a moving average of past
gradients to accelerate conver-
gence

Adjusts the learning rate adap-
tively based on a moving aver-
age of squared gradients

Memory Term Velocity: vt = βvt−1 + (1 −
β)∇J

Accumulator: st = βst−1+(1−
β)(∇J)2

Update Equation θ = θ − αvt θ = θ − α ∇J√
st+ε

Effect on Learning
Rate

Uses a fixed global learning
rate α

Uses an adaptive per-
parameter learning rate

Behavior Helps reduce oscillations and
accelerates convergence in con-
sistent directions

Normalizes updates to prevent
too large steps in steep direc-
tions

Best For Problems with ravines or con-
sistent gradient directions

Problems with varying gradi-
ent magnitudes or noisy gradi-
ents

Table 1: Comparison of Gradient Descent with Momentum vs RMSProp

Here we have the same function as before, z = f(x, y) = x2 + 10y2. The full Matlab
code is attached at the end, but here is the resulting trajectory. There is a stark difference
between this trajectory and the previous ones.

4



Adam

Adam (short for Adaptive Moment Estimation) combines Momentum and RMSprop. It
computes two moving averages:

� The first moment (mean): mt

� The second moment (uncentered variance): vt

The update rules are:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t =

mt

1− βt1
v̂t =

vt
1− βt2

θt+1 = θt −
η√
v̂t + ε

m̂t

To give a sense for how this works, here are some values of the training parameters that
tend to work as default values:

� β1 = 0.9

� β2 = 0.999

� ε = 10−8

5



� η = 0.001

And to compare the trajectory to our previous examples, there is Matlab code attached
that used Adam as the optimizer for f(x, y) = x2 +10y2, and here is the resulting trajectory.

In conclusion, Adam is a powerful optimizer that adapts both the step size and the
direction of updates based on gradient history. It is particularly effective for complex and
noisy training problems, making it a go-to choice for optimizing neural nets.

� Combines benefits of Momentum and RMSprop.

� Requires little memory.

� Automatically adjusts learning rates for each parameter.

� Works well in practice for a wide range of models.

6



Attachment 1: Matlab code for Momentum Example

% Script: Gradient Descent with Momentum

% Function definition

f = @(x, y) x.^2 + 10*y.^2;

grad = @(x, y) [2*x; 20*y];

% Parameters

alpha = 0.1;

num_iters = 50;

% ----- Gradient Descent with Momentum -----

x_m = -3; y_m = 3;

v = [0; 0];

beta = 0.9;

traj_mom = zeros(2, num_iters);

for i = 1:num_iters

g = grad(x_m, y_m);

v = beta * v + (1 - beta) * g;

x_m = x_m - alpha * v(1);

y_m = y_m - alpha * v(2);

traj_mom(:, i) = [x_m; y_m];

end

% ----- Regular Gradient Descent -----

x_g = -3; y_g = 3;

traj_gd = zeros(2, num_iters);

for i = 1:num_iters

g = grad(x_g, y_g);

x_g = x_g - alpha * g(1);

y_g = y_g - alpha * g(2);

traj_gd(:, i) = [x_g; y_g];

end

% ----- Plotting -----

[xs, ys] = meshgrid(-4:0.1:4, -4:0.1:4);

zs = f(xs, ys);

figure;

contour(xs, ys, zs, 50); hold on;

7



plot(traj_gd(1, :), traj_gd(2, :), ’b-o’, ’LineWidth’, 2);

plot(traj_mom(1, :), traj_mom(2, :), ’r-o’, ’LineWidth’, 2);

title(’Gradient Descent vs Momentum’);

xlabel(’x’); ylabel(’y’);

legend(’Contours’, ’Gradient Descent’, ’Momentum’);

grid on;

8



Attachment 2: RMSProp Example in Matlab

% Function and gradient

f = @(x, y) x.^2 + 10*y.^2;

grad = @(x, y) [2*x; 20*y];

% Parameters

alpha = 0.1; % Base learning rate

beta = 0.9; % Decay rate for moving average

epsilon = 1e-8;

num_iters = 50;

RMSProp is short for ‘‘Root Mean Squared Propagation’’.

% Initialization

x_r = -3; y_r = 3;

s = [0; 0]; % Running average of squared gradients

traj_rms = zeros(2, num_iters);

% RMSProp loop

for i = 1:num_iters

g = grad(x_r, y_r);

s = beta * s + (1 - beta) * (g.^2); % element-wise square

x_r = x_r - alpha * g(1) / (sqrt(s(1)) + epsilon);

y_r = y_r - alpha * g(2) / (sqrt(s(2)) + epsilon);

traj_rms(:, i) = [x_r; y_r];

end

% ---- Plot with contours and comparison ----

[xs, ys] = meshgrid(-4:0.1:4, -4:0.1:4);

zs = f(xs, ys);

RMSProp is short for ‘‘Root Mean Squared Propagation’’.

figure;

contour(xs, ys, zs, 50); hold on;

plot(traj_rms(1, :), traj_rms(2, :), ’g-o’, ’LineWidth’, 2);

title(’RMSProp Optimization Trajectory’);

xlabel(’x’); ylabel(’y’);

legend(’Contours’, ’RMSProp’);

grid on;

9



Attachment 3: Sample Code for Adam

% Adam Optimization for f(x, y) = x^2 + 10y^2 with 2D contour plot

% Objective function and its gradient

f = @(x, y) x.^2 + 10*y.^2;

grad_f = @(x, y) [2*x; 20*y];

% Initialize variables

x = -3;

y = 3;

theta = [x; y];

% Adam hyperparameters

alpha = 0.1; % Learning rate

beta1 = 0.9;

beta2 = 0.999;

epsilon = 1e-8;

% Initialize moments

m = [0; 0];

v = [0; 0];

% Number of iterations

max_iters = 100;

history = zeros(max_iters, 3); % Store x, y, and f(x,y)

for t = 1:max_iters

% Compute gradient

g = grad_f(theta(1), theta(2));

% Update biased first moment estimate

m = beta1 * m + (1 - beta1) * g;

% Update biased second raw moment estimate

v = beta2 * v + (1 - beta2) * (g.^2);

% Compute bias-corrected moments

m_hat = m / (1 - beta1^t);

v_hat = v / (1 - beta2^t);

% Update parameters

theta = theta - alpha * m_hat ./ (sqrt(v_hat) + epsilon);

10



% Store for plotting

history(t, :) = [theta(1), theta(2), f(theta(1), theta(2))];

end

% Display final result

fprintf(’Minimized at x = %.4f, y = %.4f, f(x,y) = %.4f\n’, ...

theta(1), theta(2), f(theta(1), theta(2)));

% Generate grid for contour plot

[x_grid, y_grid] = meshgrid(-3.5:0.1:3.5, -3.5:0.1:3.5);

z_grid = f(x_grid, y_grid);

% Plot the contour and optimization path

figure;

contour(x_grid, y_grid, z_grid, 50); hold on;

plot(history(:,1), history(:,2), ’ro-’, ’LineWidth’, 2, ’MarkerSize’, 5);

xlabel(’x’); ylabel(’y’);

title(’Adam Optimization on f(x,y) = x^2 + 10y^2’);

grid on; axis equal;

legend(’Contours of f(x,y)’, ’Adam trajectory’);

11


