
Figure 1: A rectangular array of cells. The grayscale value corresponds to how much the
cells are responding to a given pattern. The winning cell is at position (3, 1)

Kohonen’s Self Organizing Map (2018)

Kohonen’s Self Organizing Map (SOM) is important in several ways. The first is that the
cluster centers self-organize in such a way as to mimic the density of the given data set,
but the representation is constrained to a preset structure. We’ll see how that works later.
Secondly, Kohonen is convinced that this map is a simple model on how neurons in the brain
can self-organize. To read more about this, see Kohonen’s book [?]. Thirdly, the general
principles of using this map can be generalized to solve other problems. Again, to read more
about this, consult Kohonen’s book. We will focus here on the clustering aspects of the
SOM.

In biological arrays of neural cells, if one cell is excited, it will dominate the array’s
response to a given signal. Nearby cells may give a weak response, while cells that are far
away give no response at all. One can see this “on-center, off-surround” concept in arrays
of visual cells, for example. In Figure 1, we illustrate this concept that is also known as
competition. Here we see a rectangular array of cells. In this case, the winning cell is at
the (3, 1) position. Its receptive field is approximately 1.5 units. Outside that field, the cells
are not responding.

The key difference in moving from the k-means to the SOM is the idea that each cluster
will have two representations. One representation of a cluster center will be in the data,
usually in IRn, as before. The new twist is that each cluster center ALSO belongs to some
“topological structure”, like an array of cells.

Typically, cells are arranged in a rectangular or hexagonal grid- although this is not a
necessity- they may represent points on a line, or a sphere, or a torus, etc. The important

1



point here is that, whatever the structure, it is possible to obtain a metric between
cluster centers in the array. These metrics define the relationship between the cluster
centers, and is what we mean by “topology”.

Definition: Denote the distance between centers i and j using this metric as: dI(i, j)

Before we continue, let’s examine a few things more carefully.

Defining the Receptive Field

Suppose we have one cell that’s fixed- we’ll label it as cell w (later, this will stand for the
“winning” cell). The receptive field around the cell in the topological structure will then be
defined as the Gaussian,

exp

�−d2I(i, w)

λ2

�

This comes to us from the “normal distribution”, which, if x is a scalar value, is typically
defined (without the normalizing constant) as:

f(x) = e−(x−µ)2/2σ2

This has a maximum value of 1 where x = µ (the mean of the normal distribution), then
drops off quickly as x gets farther from µ. How fast the drop off occurs is the function of the
standard deviation σ. For a plot with zero mean and unit standard deviation (unscaled), see
Figure 2.

Figure 2: The unscaled normal distribution, e−(x−µ)2/2σ2
, is used as a model for our receptive

field in the SOM.

How will the Algorithm Proceed?

To begin, we’ll randomly initialize the centers in the data (similar to the beginning of
k−means). We will then slowly update the location of the centers using both the loca-
tion of the centers in the data, AND the location of the centers in the topological array.

2



We’ll do that by taking one data point at a time. The cluster center closest to the data is
the winner, and is moved towards the data point. To do that, notice that the line:

c = c+ � · (x− c)

will move c closer to x. The other centers are then moved towards the point with an
attractive force that is proportional to the metric on the topological array.

Hopefully, the algorithm will “converge” in such a way that the topological structure
will unfold itself across the data. Here are three examples of topological structure. In the
first function, topline, we use a line of cells (and the distance metric reflects that). The
second example uses a circle (topcircle), and lastly we use an n× n square grid of values
(toparray).

function distout=topline(i,j,n)

% For a line, cell indices i, j (out of n total) can be thought of as

% integers on the line.

distout=abs(i-j);

end

function distout=topcircle(j,k,n)

% On the unit circle divided into n arcs, the distance between the jth and

% kth point can be defined as the angle in [0, 2*pi] between the two

% points.

temp=abs(j-k);

t=min(temp,abs(1-temp));

distout=t*2*pi/n;

end

function distout=toparray(j,k,n)

% Assume we’re on an nxn square lattice. Then j and k can be integers from

% 1 to n^2. The metric is the taxicab metric.

[X,Y]=meshgrid(1:1:n,1:1:n);

Xt=X(:);

Yt=Y(:);

distout=abs(Xt(i)-Xt(j))+abs(Yt(i)-Yt(j));

% Using the 2-norm:

%distout=norm([Xt(i), Yt(i)]-[Xt(j), Yt(j)]);

Others are possible of course- How about a sphere, or a torus? Yes- But in the imple-
mentation in Matlab, we normally only use a two dimensional hexagonal array (useful for
visualizing high dimensional data).

Here we would note that, unlike k−means, the SOM algorithm does not have a known
quantity that it minimizes. It’s always a good idea to keep an eye on the algorithm as it
progresses.

3



Before getting to the specifics of the algorithm, we’ll also need a method of updating the
parameters as training progresses. We’ll use the power method that we introduced earlier.
If α is the parameter of interest, then the value of α at time step k is given as:

α(k + 1) = αi

�
αf

αi

� k
tmax

(1)

Where we set the initial and final values of α as αi,αf , respectively, and tmax is the maximum
number of iterations.

With that, let’s not examine the SOM algorithm:

• Kohonen’s SOM Algorithm:

– Initialize centers, �i,f , λi,f , tmax

– Choose a data point x at random from X.

– Find the closest center, cw. Call this the winning center.

– Update all centers. If we’re currently at iteration k, then:

c(i)(k + 1) = c(i)(k) + �(k) · exp
�−d2I(i, w)

λ2(k)

��
x− c(i)(k)

�

– Update �, λ according to Equation (1).

– Repeat until a stopping criterion has been attained (usually when tmax has been
reached).

• Training Notes:

– Initially, use large values of λ (about half the diameter of the set). This strongly
enforces the ordering of the cells.

– Small values of λ “relaxes” the ordering, and allows the cluster centers to spread
out amongst the data set. The two steps are called the ordering phase, followed
by the training phase.

– Stopping criteria: There are several alternatives. One method is to stop if the
centers are no longer changing significantly. Matlab will simply stop after the
preset number of iterations.

SOM in Matlab’s “Deep Learning Toolbox”

As of 2018, Matlab’s neural nets toolbox is being renamed the “Deep Learning Toolbox”.
In it are some built-in options that we’ll explore here for building, training and visualizing
SOMs.

There are some things to consider before you use the algorithm:

4



• What topology (and how many neurons) do you want to use? Matlab provides you
with three options: gridtop, hextop, and randtop. All three can be defined in any
number of dimensions, although of course, we’ll only be able to see the first few. Here
is a sample command with a visualization for a hexagonal grid in three dimensions
using 4× 3× 2 neurons.

pos=hextop([4,3,2]);

plotsom(pos);

Figure 3: Three dimensional hexagonal topology for the SOM.

• Which distance function should be used? Matlab gives several alternatives:

– dist is the standard Euclidean distance.

– linkdist. See the Matlab help file.

– mandist, or “Manhattan” metric, also known as the “taxicab” metric.

– boxdist is a layer distance function that is commonly used with the grid topology.
Its probably easiest to visualize it as below in Figure 4.

Kohonen’s Map Example:

Here’s a very short example, followed by some discussion of Matlab’s training parameters.

5



Figure 4: The “box distance” metric. Going from the black neuron in the middle, every
neuron in the lightest gray area is one unit away. The next darker gray, every element is two
units away, and so on. (Image from the Deep Learning Toolbox).

x = simplecluster_dataset; %2 x 1000, 4 "clusters"

net = selforgmap([8 8]); %Default topology is hex

net = train(net,x);

y = net(x); %Output is 64 x 1000

classes = vec2ind(y); %Converts to a 1 x 1000

plotsompos(net,x); %Plot the clusters and data

plotsomtop(net); %Plot the topology.

The 64 centers that we have created have positions in the data that are stored in
net.iw1,1. A distance matrix is also stored- When we plot, we only connect centers whose
distance is 1. This array is in net.layers1.distances.

To classify new data points in a data set X, we can type:

A=sim(net,X);

An important point to note as we go along- Unlike the k−means algorithm, the SOM will
attempt to “mimic” the density of the data. In fact, there are several papers that exploit
this feature to get estimations of the density using the SOM.

Project: Taxonomy

In this project, we use Kohonen’s Map to visualize high dimensional data in two dimensions.
We will compare this to Principal Components Analysis (PCA).

What’s this project about?
In many applications, we are given high dimensional data that we would like to visualize

in two dimensions. In this project, the goal of the clustering algorithm is to see which groups
of data points belong together - That is, how is the data sitting in that high dimensional
space.

6



One application that we look at here is animal taxonomy, where we group animals to-
gether based on their physical characteristics.

Description of the data

The script file taxonomy.m defines a set of labels and data corrresponding to a taxonomy
of animals- That, 13 animals with 16 characteristics. Calling the script will load a matrix
X that is 13 × 16 with entries either 0 or 1. Each column represents characteristics of one
animal, 0 means that characteristic is not present, 1 means that the characteristic is present.
The characteristics are (in order):

• Is small, medium, big (first three entries)

• Has 2 legs, 4 legs, hair, hooves, mane, feathers (next 6 entries)

• Likes to fly, run, fly, swim (next 4 entries)

The animals (in order) are: Dove, Hen, Duck, Goose, Owl, Hawk, Eagle. Fox, Dog, Wolf.
Cat, Tiger, Lion. Horse, Zebra, Cow. (Grouping with periods was for clarity).

Also after running the script, you should find the variable G. If you type G{1}, Matlab
will return string one, which is Dove. This will help to identify the cluster centers in the
plots below.

NOTE: Cell arrays are handy to use if you want to store a series of vectors that are not
of the same size. They can also be used to store other types of data, and by using strings,
one can also use a cell array to index a family of functions (by their m-file names).

Project, Part I: For the 16 data points in IR13, project the data to the best two
dimensional space. On the two dimensional plot of the 16 data points, label them according
to the animal name.

In Matlab, you can plot a text string at coordinates (x, y) by using the text command.
For example, in the taxonomy file, there is a string of labels named G. Then the following
command would plot the labels in random places:

x=rand(16,1);

y=rand(16,1);

text(x,y,G);

Project, Part II: Use Matlab’s SOM commands to map the 16 data points onto a
10 × 10 rectangular array of neurons. Plot the resulting classifications on the rectangular
grid.

7


