
Chapter 10

k-Nearest Neighbors

We might observe that we use experience in order to predict outcomes. It is the accumulation of experiences
that give us the ability to become more nuanced in those predictions, and if a given situation is completely
outisde of that set of accumulated experience, then we will probably not be able to anticipate what will
happen.

It is this basic observation that lies at the heart of the nearest neighbor classifier. Let’s set this up
properly: Suppose we have p points in IRn (stored in a matrix X) that have class labels stored in a target
vector t (so t might be p × 1). The problem is this: Given a new point x̂, I want to determine the most
appropriate class label for this point. The nearest neighbor rule is the following:

Nearest Neighbor Rule

Given data in matrix X and class labels in t, the class label for a new point x̂ is given by the class
label of the point in X to which it is closest. That is, if i∗ is the index of the point in X closest to x̂:

i∗ = min
i
‖X(:, i)− x̂‖

then the target label for the new point is ti.

As a side note, this is a supervised learning task, as opposed to data clustering that we looked at
earlier, which was unsupervised because we did not have the class label.

The nearest neighbor rule is about as straightforward a rule as they come. Think about what the set of
boundaries between classes would look like, and you might visualize something we’ve seen before:

117

Yes- the decision boundaries for the nearest neighbor rule forms Voronoi cells, with the data points from
X at each center.

10.0.1 Implementing the Nearest Neighbor Rule

The main computation will be the set of distances from the new point x̂ to every column of the matrix X.
In fact, we really don’t need the actual distances, rather the distances squared would work just as well and
would save us from having to do the extra square root.

Rather than creating a loop through the data, it is usually easier and faster to “vectorize” this compu-
tation. In Matlab, this would look like:

temp=X-hat_x; % Subtract hat_x from each column of X.

distances=sum(temp.*temp); % Sum (down) the square of temp to get a row

% of squared distances

[vals,idx]=sort(distances); % Sort the distances in ascending order

ClassLabel=t(idx(1)); % The desired label is the label whose index

% is first in idx, found in target vector t.

In Python, we’ll have something similar.

import numpy as np

temp=X-hat_x

distances=np.sum(np.square(temp),axis=0)

idx=np.argsort(distances)

ClassLabel=t[idx[0]]

Example

To the right is an example. We have three points in
the plane for the matrix x. Two have class label A
and one has class label B. There is an unknown point
also marked. Which class label should that have? It
would seem reasonable to assign that to class A. But
wait!

Here is my actual data:

X =

[
0.1 0.1 0.2

1000 2000 1500

]
t = [A A B]

x̂ =

[
0.11
1500

]
distances =[250, 000 250, 000 0.008]

We see that the image is very misleading- the scales on the x, y axes are completely different, so that the
distance on the x axis is almost completely swamped out by the scale on the y.

This can happen frequently with “mis-scaled” data, especially when we’re relying on the Euclidean
distance metric. We have two ways to fix this, if it is an issue:

• Rescale the data: The typical fix is to mean subtract and divide by the standard deviation in the x
and y coordinates independently, so that both have approximately the same scale.

118

• Change the metric: For example, we can weight the distances:

‖α1(∆x)2 + α2(∆y)2‖

where α1, α2 are the weights- we could make α1 much larger than α2 in order to correct the imbalanced
scale.

The main point here: Pay attention to your data. Be sure you know what kinds of scales you’re working
with, and re-scale the data if necessary.

10.0.2 K-nearest Neighbor Classifiers

In the k−nearest neighbors algorithm, we look at the k−nearest points in X to the new point x̂. To decide
on a class label, it is common to use “majority rule” voting, so for example, if we had 5 nearest neighbors,
and 3 of them were class A and 2 were class B, we would choose class B. The only change to our previous
code is to count the class labels and choose the one with the max.

You might also want to allow the closest points to have more weight in the calculation than points farther
away. In that case, instead of adding a count of 1 for each neighbor in a certain class, you would add 1/d.
Then the class with the higher score wins.

Extreme Cases

If k = 1, the function will simply find the data point it is closest to, and give that output. In particular, if we
classify data used in the model, then we would have 100% classification, as the model will have memorized the
data. If k is large enough to always capture all the data, then the classification will be constant (whichever
class is most prominent in the training data).

Presumably, there is an ideal number of nearest neighbors that we should use- but how should that
number be selected? One method- Cross Validation will be described shortly. First, given a classifier, how
accurate is it?

Is a smaller k better than a large k?

For small values of k, we run the risk of modeling “noise” in the data. The boundaries between classes can
be unstable and complicated (but “accurate” because we are overfitting). Large values of k will smooth out
the borders between classes making it easier for us to generalize. See the image below, where the image to
the left is with k = 1 (very accurate, but does not generalize well) and the image to the right is k = 20 (less
accurate, but good generalization).

119

I’ve seen some rules of thumb that say we should use about
√
N as the value of k, where N is the number

of sample points, but depending on the problem, this could be unreasonably large or small, so this tends to
be problem dependent. Later in this section, we’ll see how to use a technique (cross validation) to help us
determine a good value of k.

10.1 Accuracy: Testing, Training and Validation Sets

As we mentioned in the previous section, it is possible to get 100% accuracy if we choose k = 1 and only look
at data that was used to build the model. So if we’re always 100% accurate, then there’s really no point in
analyzing why- the data has been memorized. In this case, we would say that the model has been overfit-
That is, we’re modeling everything about the data and not trying to generalize.

On the other extreme where every data point is included in the neighbors, then the prediction is constant-
this is an extreme case of underfitting, where we only have the general trend modeled.

We try to fix the overfitting, underfitting issue by considering the following: The “error” needs to be
measured using data that was NOT used for training. Before training, we need to reserve some data for that
purpose.

Some definitions before continuing:

• The training set is the set of data we’ve reserved for building the model.

• The validation set is the set of data we’ve reserved for checking model parameters (if needed).

• The testing set is reserved to measure the error at the very end of training. It must be data that
the model has not used for training or testing. The golden rule of machine learning is to never use
training data for measuring accuracy!

Now we use our training set to build the model parameters. Then you use the validation set to measure
the error- We hope that the validation set will tell us how well our model is generalizing to “new” data. As
our parameters are being tuned (for example, the number of neighbors), we will expect that the error using
validation data will decrease until we’ve reached some optimal value, at which point the error will begin to
increase again. It only now that the third set, the testing set, can be used to measure the “true” error.

Now that we’ve described how to use the three data sets, let’s talk about some practicalities. We will
probably not have enough data to keep producing new training sets as we tune the model parameters. If
you’re a car manufacturer, for example, those data points may be costing you tens of thousands of dollars
each. We’ll need a different idea for model tuning- That is Cross Validation.

10.1.1 k-fold Cross Validation for Tuning Your Model

To begin with, suppose we have split our data into a training set and a test set. A common percentage
might be 70-30, although this is problem dependent.

Is there anything wrong with doing the following?

• Use the training set with some set of model parameters (like the number of neighbors),

• Determine the error using the test set.

• Repeat this process while changing the model parameters over some finite set of values (but not
changing the training or test set).

The biggest problem with this method is that we used our test set to determine the model parameters,
so now we have no reserved data that we can use to measure the “true” error. Secondly, since we’re choosing
the data split randomly, it might happen that we have chosen a bad (nonrepresentative) sample- In that
case, we have no remedy while we’re determining the parameters.

120

What can be done instead? In k−fold cross validation,
we’ll split the training set into k distinct sets (called
folds), and we’ll be training k times. Each time we
train, we will designate one of the k sets to be the
validation set, and the other k− 1 sets will be used to
train the model. Afterwards, we determine the error
as the average over the k training sessions. As an
example of how to split the data, here is a “cartoon”
showing 5−fold cross validation (as a general rule of
thumb, researchers tend to use k = 5 and k = 10 if
they have enough data).

As an example for using CV for determining the best number of nearest neighbors, we first split the data
into training and testing sets, and reserve the test set. We now split the training data into k folds, and with
some fixed value of k (nearest neighbors), we run the k training sessions and get the error estimate. Now
we increase k by one and repeat. And repeat. And repeat- At the end, we’ll choose the number of nearest
neighbors that gave us the best average error. Once that is done, we will re-train the algorithm with that
number of neighbors, and use the reserved test set for the final error computation.

We will mention here as well- this kind of process can also tell you what kind of algorithm to run on your
data. You may be selecting from several kinds of classifiers, for example. Running k−fold cross validation
is a good way of measuring the error from each classifier, then you would select the algorithm with the best
average error. Finally, you would train the classifier on the training set and use your reserved test set for
the error computation.

We won’t go too much further into cross validation right now, but Python does have versions of cross val-
idation available in GridSearchCV and RandomizedSearchCV to determine the best values of the designated
parameters. For more information, see the scikit-learn documentation.

10.2 The Confusion Matrix

In the previous section, we learned how to get a good measure of our error. In classification problems, we
typically want to see more than the overall average error. Rather, it can be very useful to see what kinds of
errors are being made. For example, if we are misclassifying label A, is it because we’re labeling it only as
B, or sometimes C as well?

To answer these questions, we set up an array called a confusion matrix. Here’s a small example,
where we have some algorithm classifying on object as a dog, cat, or rabbit.

121

Predicted classes are along the vertical axis of the matrix, actual classes are along the horizontal, although
this “rule” tends to not be followed very strictly, so do pay attention to your axis labels.

Along the diagonal entries are where the predicted result is equal to the actual result (which are the
correct classifications), and the off-diagonal elements represent classification error. For example, our set had
11 objects that were dogs but classified as cats.

Although missing from our example, some confusion matrices will also provide the row and column sums,
which can be helpful. To find the total number of objects being classified, we sum all the cells together.
In this example, we have 133 objects being classified, and 74 of those were classified correctly, giving us an
overall accuracy of 57%. We can also look at some subscores, for example, looking only at dogs, we had 38
total (sum down the column), and we correctly classified 23, giving an accuracy of about 61%. For cats, we
had 51 objects total and classified 29 correctly, giving 57% accuracy (and so on).

Now that we have some ideas about how to visualize our error, we have one more topic to cover.

10.2.1 K-nearest Neighbor Regression

So far we have discussed only the clustering (or classification) problem. As it turns out, the algorithm can,
with very few changes, be made to model a function as well.

In this case, our data points are still in X, but the function output is in the target vector t. To find the
function output for a new point x̂, we would still find the k−nearest neighbors in X, determine their output
values from t, and combine these values in some way to produce our estimate for x̂. There are multiple ways
of doing this- for example, the new output is the average of the k given outputs.

The problem with this is it gives equal weight to points very close to x̂ and points that may be far away
(even though it is within the 5 closest points). Therefore, we might provide a weighted average. Since the
distances are all non-negative, we can form weights αi for the k points as the following, where di is the
distance to the ith point:

αi =
1/di∑k

j=1(1/dj)

You’ll notice that 0 ≤ αi ≤ 1 for each i, and
∑k
i=1 αi = 1, like a set of probabilities. Then the output of

function at x̂ is given by:

f(x̂) =

k∑
i=1

αiti

This technique could be extended to functions of more than one variable. For example, if the known target
values are vectors t1, . . . , tp, then we can compute the output just as before:

f(x̂) =

k∑
i=1

αiti

This kind of a linear combination (with non-negative weights that sum to 1) has a special name- This is
called a convex combination of the vectors t1, . . . , tp (where the weights for the targets outside of k points
are set to zero).

10.2.2 Example

Here is an example of the output of the one-dimensional regression. We would like to predict Bone Mineral
Density (BMD) based on the age of a patient. The dots in the image below represent the raw data. In the
first graph below, we show the result of using an increasing number of nearest neighbors (with a straight
average output). It is clear that the larger the number of neighbors, the smoother the function becomes.
With k = 1 (the red curve) we are jumping all over the graph, but the blue curve (20 nearest neighbors), we
have smoothed the function by quite a bit.

122

Further, below we show the difference in using the standard average as the output versus the weighted
average (weighted as in the text). The weighted average in this example actually shows a bit more variation.

We’ll take a look at this example more closely in the homework exercises.

10.3 Conclusions

In this section, we discussed the k−nearest neighbor classifier and regression algorithm. But just as impor-
tantly, we’re starting to talk about data. In particular:

1. Given a novel data set, be sure and examine it. You’re looking for scaling issues, but there could be
missing data or duplicate data as well. We’ll be talking about preprocessing more later- In today’s
work, we saw the importance of scaling the variables.

2. When we engage in model building, it is critically important that we reserve some data for estimation
of the true model error, so we initially divide the data (both input and target) into a training set and
a test set. A rule of thumb is approximately 70-30.

3. The training set can then be further subdivided, into training and validation sets. This can be done
using a single partition, or we can prep k−fold cross validation and separate into k folds.

4. The output of the classifier can be visualized using a confusion matrix.

123

10.4 Homework

1. It has been said that k−nearest neighbors should not be used for high dimensional input- Let’s see
why. Suppose our data is in the unit hypercube,

0 ≤ xi ≤ 1, i = 1, 2, 3, . . . , n

So in dimension 1, we’re on the interval [0, 1]. In dimension two, we have a square [0, 1] × [0, 1] or
[0.1]2. In dimension 3, the domain is [0, 1]3 and so on. Further, let’s set the number of data points in
each problem to 1000.

• In dimension 1, find the number of points so that 0 ≤ x ≤ 1/2.

• In dimension 2, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2.

• In dimension 3, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2, 3.

• In dimension 4, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2, 3 and 4.

As an example in Matlab for two dimensions, we would have:

N=1000;

dim=2;

X=rand(1000,dim); %Data

count=0; %keep track of the data inside nghbrhd

for j=1:N

if X(j,1)<0.5 && X(j,2)<0.5

count=count+1;

end

end

fprintf(’Count is %d\n’,count);

What should we find? As the dimension increases, the data becomes sparse. Notice that initially our
neighborhood took half of the data, but as we increase the input dimensions to just 4, that number
drops signicantly. Can you see why geometrically?

This phenomenon is known as the curse of dimensionality: As we increase the number of input
dimensions, the problem becomes exponentially more difficult.

124

Chapter 11

Linear Neural Networks

In this chapter, we introduce the concept of the linear neural network. As we will see, a neural network is
a biologically inspired algorithm that allows us to build a functional representation from data. In statistical
terms, a neural network generally represents nonlinear regression. In this chapter, however, we start with a
linear network and examine its properties and shortcomings.

11.1 A Model of Learning

D.O. Hebb (1904-1985) was a physiological psychologist at McGill University. In Hebb’s view, learning could
be described physiologically: There is some physical change in the nervous system to accommodate learning,
and that change is summarized by what we now call Hebb’s postulate (from his 1949 book):

When an axon of cell A is near enough to excite a cell B and repeatedly takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.

As with many named theorems and postulates, this was not an idea that was completely new, but he does
give the postulate in a form that can be used as a basis for machine learning. Here are some questions you
might think about:

1. Hebb’s postulate describes a strengthing or weakening of connections. How is this biologically or
chemically done? What exactly is that “physical change”?

2. There is also near instantaneous learning- Circumstances that are so emotionally intense, that we do
not require repeated exposure. But perhaps internally repeating the exerience is enough.

3. The postulate does not give any consideration to feedback. If the action causes pain, will the neuron
connections still be strengthened? How does emotion in general mitigate or assist in these construc-
tions? Again, we can’t give authoritative answers to these questions.

We’ll leave these questions for you to think about, and move into something we can answer. How do you
mathematically model Hebb’s postulate?

11.2 Linear Neural Nets

We will go into the formal details later for defining neural nets, but this is a good place to get a feel for what
they’re all about.

Let us first build a simple model for a neuron. A neuron has three body parts- The dendrites, which
carry information to the cell body, the cell body, and the axon, which carries information away from the cell
body.

125

