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Chapter 1

A Case Study in Learning

1.1 What is Learning?

Here are some definitions of learning:1

• “Learning involves strengthening correct responses and weakening incorrect responses. Learning in-
volves adding new information to your memory. Learning involves making sense of the presented
material by attending to relevant information, mentally reorganizing it, and connecting it with what
you already know.”

From eLearning and the Science of Instruction by Ruth C. Clark and Richard E. Mayer

• “Learning is the relatively permanent change in a persons knowledge or behavior due to experience.
This definition has three components: 1) the duration of the change is long-term rather than short-
term; 2) the locus of the change is the content and structure of knowledge in memory or the behavior
of the learner; 3) the cause of the change is the learners experience in the environment rather than
fatigue, motivation, drugs, physical condition or physiologic intervention.”

From Learning in Encyclopedia of Educational Research, Richard E. Mayer

In a broad sense, learning is the process of building a “desirable” association between stimulus and response
(domain and range), and is measured through resulting behavior on stimulus that has not been previously seen.

In machine learning, problems are typically cast in one of two models: Either supervised or unsupervised
learning:

• In supervised learning, we are given examples of proper behavior, and we want the learner (computer)
to emulate and extrapolate from that behavior.

• In the other type of learning, unsupervised learning, no specific input-output are given. Rather an
overall goal is given, and the learner (computer) must figure out how to get from the initial condition
to the end goal. Here are some examples to help with the definition:

– Suppose you have an old clunker of a car that doesn’t have much of an engine. You’re stuck in a
valley, and so the only way out will be to go as fast as you can for a while, then let gravity take
you back up the other side of the hill, then accelerate again, and so on. You hope that you can
build up enough momentum to get out of the valley (that’s the goal).

– Suppose you’re driving a tractor-trailer, and you need to back the trailer into a loading dock
(that’s your goal).

– In a game of chess, the input would be the position of each of the chess pieces. The overall goal
is to win the game.

1Downloaded from http://theelearningcoach.com/learning/10-definitions-learning/
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In general, supervised learning is much easier than unsupervised learning. One reason is that in unsuper-
vised learning, a lot of extra time is spent in trial-and-error exploration of the possible input space. Contrast
that with supervised learning, where the “correct” behavior is explicitly given.

1.1.1 Questions for Discussion:

1. Consider the concept of superstition: This is a belief that one must engage in certain behaviors in
order to receive a certain reward, where in reality, the reward did not depend on those behaviors. Is it
possible for a computer to engage in superstitious activity? Discuss in terms of the supervised versus
unsupervised learning paradigms.

2. A signal light comes on and is followed by one of two other lights. The goal is to predict which of the
lights comes on given that the signal light comes on. The experimenter is free to arrange the pattern
of the two response lights in any way- for example, one might come on 75% of the time.

Let E1, E2 denote the event that the first (second) light comes on, and let A1, A2 denote the prediction
that the first (second) light comes on (respectively). Let π be the probability that E1 occurs.

(a) If the goal is to maximize your reward through accurate predictions, what should you do in this
experiment? Just give a heuristic answer- you do not have to formally justify it.

(b) How would you program a machine to maximize it’s prediction accuracy? Can you state this in
mathematical terms?

(c) What do you think happens with actual subject (human) trials?

1.2 Case Study: The n−Armed Bandit

The one armed bandit is slang for a slot machine, so the n−armed bandit can be thought of as a slot machine
with n arms. Equivalently, you may think of a room with n slot machines.

The problem we’re trying to solve is the classic Las Vegas quandry: How should we play the slot machines
in order to maximize our returns?

Discussion Question: Is the n−armed bandit a case or supervised or unsupervised learning?

First, let us set up some notation: Let a be an integer between 1 and n that defines which machine we’re
playing. Then define the expected return:

Q(a) = The expected return for playing slot machine a

You can also think of Q(a) as the mean of the payoffs for slot machine a.
If we knew Q(a) for each machine a, our strategy to maximize our returns would be very simple: “Play

only machine a”.
Of course, what makes the problem interesting is that we don’t know what the any of the returns are,

let alone which machine gives the maximum. That leaves us to estimate the returns, and because there will
always be uncertainty associated with these estimates, we will never know if the estimates are correct. We
hope to construct estimates that get better over time (and experience).

Let’s first set up some notation. Let

Qt(a) = Our estimation of Q(a) at time t.

so we hope that our estimates get better over time:

lim
t→∞

Qt(a) = Q(a) (1.1)

8



Suppose we play slot machine a a total of na times, with payoffs r1, . . . , rna (note that these values could
be negative!). Then we might estimate Q(a) as the mean of these values:

Qt(a) =
r1 + r2 + . . .+ rna

na

In statistical terms, we are using the sample mean to estimate the actual mean which is a reasonable thing
to do as a starting point. We’ll also initialize the estimates to be zero: Q0(a) = 0.

We now come to the big question: What approach should we take to accomplish our goal (of maximizing
our reward). The first one up is a good place to start.

1.2.1 The Greedy Algorithm

This strategy is straightforward: Always play the slot machine with the largest (estimated) payoff. If at+1

is the machine we’ll play at time t+ 1, then:

at+1 = arg max {Qt(1), Qt(2), . . . , Qt(n)}

where “arg” refers to the argument of the maximum (which is an integer from 1 to n corresponding to the
max) . If there is a tie, then choose one of them at random.

We’ll need to translate this into a learning algorithm, so set’s take a moment to see how we might
implement the greedy algorithm in Matlab.

Programming Sidenote (Matlab/Python/R)

Here’s an example, where we want to input a vector of real numbers in x, and output the indices (arguments)
indicating where the maximum element is.

Matlab Python R
x=[1 2 3 0 3] x=np.array([1 2 3 0 3]) x<-c(1,2,3,0,3)

idx=find(x==max(x)) temp=np.where(x==np.amax(x)) idx<-which(x==max(x))

idx=temp[0]

A couple of Python specific notes: First, we gave the command import numpy as np. Secondly, Python
starts counting with index 0. Therefore, while in Matlab and R, idx will contain 3, 5 and in Python, idx
will contain 2, 4.

Going back to the greedy algorithm, I think you’ll see a problem- What if the estimations are wrong?
Then its very possible that you’ll get stuck on a suboptimal machine. This problem can be dealt with in the
following way: Every once in a while, try out the other machines to see what you get. This is what we’ll do
in the next section.

1.2.2 The ε−Greedy Algorithm

In this algorithm, rather than always choosing the machine with the greatest current estimate of the payout,
we will choose, with probability ε, a machine at random.

With this strategy, as the number of trials gets larger and larger, na →∞ for all machines a, and so we
will be guaranteed convergence to the proper estimates of Q(a) for all a machines.

On the flip side, because we’re always investigating other machines every once in a while, we’ll never
maximize our returns (we will always have suboptimal returns).

Using some “pseudo-code”, here is what we want our algorithm to do:

For each time we choose a machine:

• Select an action:

9



– Sometimes choose a machine at random

– Otherwise, select the action with greatest return. Check for ties, and if there is

a tie, pick on of them at random.

• Get your payoff

• Update the estimates Q

Repeat.

The programming details so far are in separate files- One for Matlab, one for Python, and one for R.

The Softmax Action Selection

In the Softmax action selection algorithm, the idea is to construct a set of probabilities. This set will have
the properties that:

• The machine (or arm) giving the highest estimated payoff will have the highest probability.

• We will choose a machine using the probabilities. For example, if the probabilities are 0.5, 0.3, 0.2 for
machines 1, 2, 3 respectively, then machine 1 would be chosen 50% of the time, machine 2 would be
chosen 30% of the time, and the last machine 20% of the time.

Therefore, this algorithm will maintain an exploration of all machines so that we will not get locked onto
a suboptimal machine. Now if we have n machines with estimated payoffs recorded at time t as:

Q = [Qt(1), Qt(2), . . . , Qt(n)]

we want to construct n probabilities at time t as:

P = [Pt(1), Pt(2), . . . , Pt(n)]

The requirements for this transformation are:

1. Pt(k) ≥ 0 for k = 1, 2, . . . (because all probabilities are positive). Another way to say this is to say
that the range of the transformation is nonnegative.

2. If Qt(a) < Qt(b), then Pt(a) < Pt(b). That is, the transformation must be strictly increasing for all
domain values.

3. Finally, the sum of the probabilities must be 1.

A function that satisfies requirements 1 and 2 is the exponential function. It’s range is nonnegative. It
maps large negative values (large negative payoffs) to near zero probability, and it is strictly increasing. Up
to this point, the transformation is:

P̂t(k) = eQt(k)

We need the probabilities to sum to 1, so we normalize the P̂t(k):

Pt(k) =
P̂t(k)

P̂t(1) + P̂t(2) + . . .+ P̂t(n)
=

exp(Qt(k))∑n
j=1 exp(Qt(j))

This is a popular technique worth remembering- We have what is called a Gibbs (or Boltzmann) distribution.
We could stop at this point, but it is convenient to introduce a control parameter τ (sometimes this is referred
to as the temperature of the distribution). Our final version of the transformation is given as:

Pt(k) =
exp

(
Qt(k)
τ

)
∑n
j=1 exp

(
Qt(j)
τ

)
10



EXERCISE: Suppose we have two probabilities, P (1) and P (2) (we left off the time index since it won’t
matter in this problem). Furthermore, suppose P (1) > P (2). Compute the limits of P (1) and P (2) as τ
goes to zero. Compute the limits as τ goes to infinity (Hint on this part: Use the definition, and divide
numerator and denominator by exp(Q(1)/τ) before taking the limit).

What we find from the previous exercise is that the effect of large τ (hot temperatures) makes all the
probabilities about the same (so we would choose a machine almost at random). The effect of small tau (cold
temperatures) makes the probability of choosing the best machine almost 1 (like the greedy algorithm).

In Matlab, these probabilities are easy to program. Let Q be a vector holding the current estimates of
the returns, as before, and let t= τ , the (scalar) temperature. Then we construct a vector of probabilities
using the softmax algorithm:

Matlab Python R
P=exp(Q/t); P=np.exp(Q/t) P<-exp(Q/t)

P=P./sum(P); P=np.divide(P,np.sum(P)) P=P/sum(P)

Programming Comments

1. How to select action a with probability p(a)?

We could do what we did before, and create a vector of choices with those probabilities fixed, but our
probabilities change. We can also use the uniform distribution, so that if x=rand, and x ≤ p(1), use
action 1. If p(1) < x ≤ p(1) + p(2), choose action 2. If p(1) + p(2) < x ≤ p(1) + p(2) + p(3), choose
action 3, and so on. There is an easy way to do this, but it is not optimal (in terms of speed). We
introduce two new Matlab functions, cumsum and histc.

The function cumsum, which means cumulative sum, takes a vector x as input, and outputs a vector y
so that y=cumsum(x) creates:

yk =

k∑
n=1

xn = x1 + x2 + . . .+ xk

For example, if x = [1, 2, 3, 4, 5], then cumsum(x) would output [1, 3, 6, 10, 15]

The function histc (for histogram count) has the form: n=histc(x,y), where the vector y is mono-
tonically increasing. The elements of y form “bins” so that n(k) counts the number of values in x that
fall between the elements y(k) (inclusive) and y(k+1) (exclusive) in the vector y. Try a particular
example, like:

Bins=[0,1,2];

x=[-2, 0.25, 0.75, 1, 1.3, 2];

N=histc(x, Bins);

Bins sets up the desired intervals as [0, 1) and [1, 2) and the last value is set up as its own interval, 2.
Since −2 is outside of all the intervals, it is not counted. The next two elements of x are inside the
first interval, and the next two elements are inside the second interval. Thus, the output of this code
fragment is N = [2, 2, 1].

Now in our particular case, we set up the bin edges (intervals) so that they are the cumulative sums.
We’ll then choose a number between 0 and 1 using the (uniformly) random number x = rand, and
determine what interval it is in. This will be our action choice:

P=[0.3, 0.1, 0.2, 0.4];

BinEdges=[0, cumsum(P)];

x=rand;

Counts=histc(x,BinEdges);

ActionChoice=find(Counts==1);

11



2. We have to change our parameter τ from some initial value τinit (big, so that machines are chosen
almost at random) to some small final value, τfin. There are an infinite number of ways of doing this.
For example, a linear change from a value a to a value b in N steps would be the equation of the line
going from the point (1, a) to the point (N, b).

Exercise: Give a formula for the parameter update, τ in terms of the initial value, τinit and the final
value, τfin if we use a linear decrease as t ranges from 1 to N .

A more popular technique is to use the following formula, which we’ll use to update many parameters.
Let the initial value of the parameter be given as a, and the final value be given as b. Then the
parameter p is computed as:

p = a ·
(
b

a

)t/N
(1.2)

Note that when t = 0, p = a and when t = N , p = b2

“Win-Stay, Lose-Shift” Strategy

The “Win-Stay, Lose-Shift” strategy discussed in terms of Harlow’s monkeys and perhaps the probability
matching experiments of Estes might be re-formulated here for the n−armed bandit experiment.

In this experiment, we interpret the strategy as: If I’m winning, make the probability of choosing that
action stronger. If I’m losing, make the probability of choosing that action weaker. This brings us to the
class of pursuit methods.

Define a∗ to be the winning machine at the moment, i.e.,

a∗ = max
a

Qt(a)

The idea now is straightforward- Slightly increase the probability of choosing this winning machine, and
correspondingly decrease the probability of choosing the others.

Define the probability of choosing machine a as P (a) (or, if you want to explicitly include the time index,
Pt(a). Then given the winning machine index as a∗, we update the current probabilities by using a parameter
β ∈ [0, 1]:

Pt+1(a∗) = Pt(a
∗) + β [1− Pt(a∗)]

and the rest of the probabilities decrease towards zero:

Pt+1(a) = Pt(a) + β [0− Pt(a)]

Exercises with the Pursuit Strategy

1. Suppose we have three probabilities, P1, P2, P3, and P1 is the unique maximum. Show that, for any
β > 0, the updated values still sum to 1.

2. Using the same values as before, show that, for any β > 0, the updated values will stay between 0 and
1- that is, If 0 ≤ Pi ≤ 1 for all i before the update, then after the update, 0 ≤ Pi ≤ 1.

3. Here is one way to deal with a tie (show that the updated values still sum to 1): If there are k machines
with a maximum, update each via:

Pt+1 = (1− β) ∗ Pt + β/k

4. Suppose that for some fixed j, Pj is always a loser (never a max). Show that the update rule guarantees
that Pj → 0 as t→∞. HINT: Show that Pj(t) = (1− β)tPj(0)

5. Suppose that for some fixed j, Pj is always a winner (with no ties). Show that the update rule
guarantees that Pj → 1 as t→∞.

2In the C/C++ programming language, indices always start with zero, and this is leftover in this update rule. This is not
a big issue, and the reader can make the appropriate change to starting with t = 1 if desired.
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Matlab Functions softmax and winstay

Here are functions that will yield the softmax and win-stay, lose-shift strategies. Below each is a driver.
Read through them carefully so that you understand what each does. We’ll then ask you to put these into
Matlab and comment on what you see.

function a=softmax(EstQ,tau)

% FUNCTION a=softmax(EstQ, tau)

% Input: Estimated payoff values in EstQ (size 1 x N,

% where N is the number of machines

% tau - "temperature": High values- the probs are all

% close to equal; Low values, becomes "greedy"

% Output: The machine that we should play (a number between 1 and N)

if tau==0

fprintf(’Error in the SoftMax program-\n’);

fprintf(’Tau must be greater than zero\n’);

a=0;

return

end

Temp=exp(EstQ./tau);

S1=sum(Temp);

Probs=Temp./S1; %These are the probabilities we’ll use

%Select a machine using the probabilities we just computed.

x=rand;

TotalBins=histc(x,[0,cumsum(Probs)’]);

a=find(TotalBins==1);

Here is a driver for the softmax algorithm. Note the implementation details (e.g., how the “actual”
payoffs are calculated, and what the initial and final parameter values are):

%Script file to run the N-armed bandit using the softmax strategy

%Initializations are Here:

NumMachines=10;

ActQ=randn(NumMachines,1); %10 machines

NumPlay=1000; %Play 100 times

Initialtau=10; %Initial tau ("High in beginning")

Endingtau=0.5;

tau=10;

NumPlayed=zeros(NumMachines,1); %Keep a running sum of the number

% of times each action is selected

ValPlayed=zeros(NumMachines,1); %Keep a running sum of the total

% reward for each action

EstQ=zeros(NumMachines,1);

PayoffHistory=zeros(NumPlay,1); %Keep a record of our payoffs

for i=1:NumPlay

%Pick a machine to play:

a=softmax(EstQ,tau);
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%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

PayoffHistory(i)=Payoff;

tau=Initialtau*(Endingtau/Initialtau)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Here is the function implementing the pursuit strategy (or “Win-Stay, Lose-Shift”).

function [a, P]=winstay(EstQ,P,beta)

% function [a,P]=winstay(EstQ,P,beta)

% Input: EstQ, Estimated values of the payoffs

% P = Probabilities of playing each machine

% beta= parameter to adjust the probabilities, between 0 and 1

% Output: a = Which machine to play

% P = Probabilities for each machine

[vals,idx]=max(EstQ);

winner=idx(1); %Index of our "winning" machine

%Update the probabilities. We need to do P(winner) separately.

NumMachines=length(P);

P(winner)=P(winner)+beta*(1-P(winner));

Temp=1:NumMachines;

Temp(winner)=[]; %Temp now holds the indices of all "losers"

P(Temp)=(1-beta)*P(Temp);

%Probabilities are all updated- Choose machine a w/prob P(a)

x=rand;

TotalBins=histc(x,[0,cumsum(P)’]);

a=find(TotalBins==1);

And its corresponding driver is below. Again, be sure to read and understand what each line of the code
does:

%Script file to run the N-armed bandit using pursuit strategy

%Initializations

NumMachines=10;

ActQ=randn(NumMachines,1);

NumPlay=2000;

Initialbeta=0.01;

Endingbeta=0.001;

beta=Initialbeta;

NumPlayed=zeros(NumMachines,1);

14



ValPlayed=zeros(NumMachines,1);

EstQ=zeros(NumMachines,1);

Probs=(1/NumMachines)*ones(10,1);

for i=1:NumPlay

%Pick a machine to play:

[a,Probs]=winstay(EstQ,Probs,beta);

%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

beta=Initialbeta*(Endingbeta/Initialbeta)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Homework: Implement these 4 pieces of code into Matlab, and comment on the performance of each.
You might try changing the initial and final values of the parameters to see if the algorithms are stable to
these changes. As you form your comments, recall our two competing goals for these algorithms:

• Estimate the values of the actual payoffs (more accurately, the mean payout for each machine).

• Maximize our rewards!

1.2.3 A Summary of Reinforcement Learning

We looked in depth at a basic problem of unsupervised learning- That of trying to find the best winning slot
machine in a bank of many. This problem was unsupervised because, although we got rewards or punishments
by winning or losing money, we did not know at the beginning of the problem what those payoffs would be.
That is, there was no expert available to tell us if we were doing something correctly or not, we had to infer
correct behavior from directly playing the machines.

We also saw that to solve this problem, we had to do a lot of trial and error learning- that’s typical in
unsupervised learning. Because an expert is not there to tell us the operating parameters, we have to spend
time exploring the possibilities.

We learned some techniques for translating learning theory into mathematics, and in the process, we
learned some commands in Matlab. We don’t expect you to be an expert programmer - this should be a
fairly gentle introduction to programming. At this stage, you should be able to read some Matlab code and
interpret the output of an algorithm. Later on, we’ll give you more opportunities to produce your own pieces
of code.

In summary, we looked at the greedy algorithm, the ε−greedy algorithm, the softmax strategy, and the
pursuit strategy. You might consider how closely (if at all) these algorithms would reproduce human or
animal behavior if given the same task.

There are many more topics in Reinforcement Learning to consider, we presented only a short introduction
to the topic.
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Chapter 2

Statistics

2.1 Quantities and Measures for Random Data

The most basic way to characterize a numerical data set is through one number- the mean (or median or
mode).

• The sample mean for a discrete set of m numbers, x1, . . . , xm is given by:

x̄ =
1

m

m∑
k=1

xk

• The mean of a set of m vectors in IRn:

Suppose we have m vectors in IRn. We can similarly define the (sample) mean by replacing the scalar
xk with the kth vector:

x̄ =
1

m

m∑
k=1

x(k)

The jth element of the sample mean vector is just the sample mean of the (scalar) data in the jth

dimension of your collection of vectors.

• Note that we can also define the mean for a collection of m×n matrices, as well. For example, if I have
a collection of k photos that are each m× n pixels, then I can compute the mean photo by summing
the matrices together, then dividing by k.

• In fact, matrices have different properties that we can consider- A matrix can be thought of as a
collection of column vectors, or as a collection of row vectors, or simply a collection of numbers.

Similarly, we can compute a mean of over the columns (and getting a column), or the mean over all
rows (and get a row), or we can compute the mean over all the numerical values of the matrix, which
is called the grand mean.

• Computing the mean in Matlab, Python and R:

– Matlab:

∗ If x is a row or column vector (example):

x=[1,2,3,4,5];

mean(x)

∗ If X is an m× n matrix (example):
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X=[1,2,3; 4,5,6];

mean(X) %Returns a row vector as default

m=mean(X,1); %Returns a row vector 1 x n

m=mean(X,2); %Returns a column vector m x 1

m=mean(mean(X)); % Returns the grand mean (a scalar)

– Python: First, import numpy: import numpy as np

∗ If x is a row or column vector- two methods are shown below:

x=np.array([1,2,3,4,5]) #Example vector

np.mean(x) #Returns a scalar

x.mean(0) #Returns an array- a scalar or a vector

∗ If X is an m× n array

X=np.array([[1,2,3],[4,5,6]])

X.mean(0) # Output: array([2.5, 3.5, 4.5])

X.mean(1) # Output: array([2., 5.])

X.mean() # Output the grand mean: 3.5

Alternatively, for the row, column means respectively:

Xr=np.mean(X,axis=0)

Xm=np.mean(X,axis=1)

– R

∗ If x is a row or column vector: then

x<-c(1,2,3,4,5)

np.mean(x) #Returns a scalar

x.mean(0) #Returns an array- a scalar or a vector

∗ If X is an m× n array

x<-array(1:6,c(2,3)) #x is a 2 x 3 matrix

colMeans(x) #Returns: 1.5 3.5 5.5

rowMeans(x) #Returns: 3 4

Alternatively,

apply(x,1,mean) #Returns: 3 4

apply(x,2,mean) #Returns: 1.5 3.5 5.5

A note about language: Should “row mean” be the mean found by summing the rows together, and
producing a row, or should “row mean” be the sum through the rows, producing a column? I will
typically mean the former, but I see that R uses the latter (the command colMeans produces the mean
down the columns and returns a row, for example).

Just be sure you’re consistent with whichever method you want to define.

• The Median is a number so that exactly half the data is above that number, and half the data is below
that number. Although the median does not have to be unique, we follow the definitions below if we
are given a finite sample:

If there are an odd number of data points, the median is the middle point. If there is an even number
of data points, then there are two numbers in the middle- the median is the average of these.

The syntax for the median works in very much the same way as the mean.

• The Mode is the value taken the most number of times. In the case of ties, the data is multi-modal.

We typically would not use the mode unless there is a special reason to do so.
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2.1.1 Matlab note, Linear Algebra

We’ll be subtracting a row vector from each row of a matrix, and similarly, we’ll subtract a column vector
from each column of a matrix. You’ll note that, if A is a matrix, r is a row, and c is a column, then writing
something like:

A− r A− c

would not be defined in linear algebra, and for older versions of Matlab, this was the case as well. This
changed several years ago, so that “Matrix - Row” is assumed to be row subtraction for each row of the
matrix, and “Matrix - Column” is assumed to be carried out column-wise on the matrix. We’ll see this
below.

2.1.2 Centering and Double Centering Data

Let matrix A be m× n, which may be considered n points in IRm (this looks at the data column-wise) or m
points in IRn (looking at the data row-wise). If we wish to look at A both ways, a double-centering may be
appropriate.

The result of the double-centering will be that (in Matlab), we determine Â so that

mean(Â, 1) = 0, mean(Â, 2) = 0

There are a couple of ways to do this. Here is onw algorithm, where the means are computed first.

Algorithm for Double Centering

• Given matrix A:

– Compute the mean of the rows. Call this row r.

– Compute the mean of the columns. Call this column c.

– Compute the grand mean. Call this scalar g.

• Output the matrix: A− r − c+ g.

Here is the implementation in Matlab, Python and R:

Matlab Python R
A=[1,2,3;4,5,6]; A=np.array([[1,2,3],[4,5,6]]) A<-array(1:6,c(2,3))

r=mean(A,1); r=A.mean(0) r=apply(A,2,mean)

c=mean(A,2); c=A.mean(1) c=apply(A,1,mean)

c=c[:,np.newaxis]

g=mean(mean(A)); g=A.mean() g=mean(apply(A,1,mean))

B=A-r-c+g B=A-r-c+g B1=sweep(A,2,r)

B2=sweep(B1,1,c)

B=B2+g

Python Note about Vector Subtraction

In the Python code, we needed to “reshape” the size of the column representing the mean across A. In the
first line, c=A.mean(1), we see that the shape of c is (2, ). After the next line, the shape of c is (2, 1). We
didn’t need to do that for r, although we probably should have- That is, the current shape of r is (3, ), but
we really wanted a row vector, so we could reshape it as r=r[np.newaxis,:] so that the shape is (1, 3).
Why? If you leave c and r as defined in the code above, what happens with c-r? You get a matrix- That is,

c− r −
[

2
5

]
− [2.5, 3.5, 4.5] =

[
−0.5 −1.5 −2.5

2.5 1.5 0.5

]
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So we need to be careful when we think we’re subtracting vectors. Now back to the text...

As a final note, double centering is only suitable if it is reasonable that the m × n matrix may be data
in either IRn or IRm. For example, you probably would not double center a matrix that is 5000 × 2- Treat
this as 5000 points in IR2, so that the mean is in IR2.

2.2 Variance and Standard Deviation

The number that is used to describe the spread of the data about its mean is the variance. As with the
mean, we rarely know the underlying distribution, so again we’ll focus on the sample variance.

Let {x1, . . . , xm} be m real numbers, and x̄ its sample mean. Then the sample variance is:

s2 =
1

m− 1

m∑
k=1

(xk − x̄)2

If we think of the data as a vector of length m, then this formula becomes:

s2 =
1

m− 1
‖x− x̄‖2

The standard deviation is the square root of the variance, so the standard deviation is s.

Quick Example

Let’s take some template data to look at what the variance (and standard deviation) measure: Consider the
data:

− 2

n
,− 1

n
, 0,

1

n
,

2

n

If n is large, our data is tightly packed together about the mean, 0. If n is small, the data are spread out.
The variance and standard deviation of this sample is:

s2 =
1

4

(
4 + 1 + 0 + 1 + 4

n2

)
=

5

2

1

n2
, s =

√
5

2

1

n

and this is in agreement with our heuristic: If n is large, our data is tightly packed about the mean, and the
standard deviation is small. If n is small, our data is loosely distributed about the mean, and the standard
deviation is large. Another way to look at the standard deviation is in linear algebra terms: If the data is
put into a vector of length m (call it x), then the (sample) standard deviation can be computed as:

s =
‖x− x̄‖√
m− 1

2.2.1 Covariance and Correlation Coefficients

If we have two data sets, sometimes we would like to compare them to see how they relate to each other. In
this case, it is important that the two data sets be ordered so that x1 is being compared to y1, then x2 is
compared to y2, and so on.

Definition: Let X = {x1, . . . , xn} , Y = {y1, . . . , yn} be two ordered data sets with means mx,my

respectively. Then the sample covariance of the data sets is given by:

Cov(X,Y ) = s2
xy =

1

n− 1

n∑
k=1

(xk −mx)(yk −my)
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There are exercises at the end of the chapter that will reinforce the notation and give you some methods
for manipulating the covariance. In the meantime, it is easy to remember this formula if you think of the
following:

If X and Y have mean zero, and we think of X and Y as vectors x and y, then the covariance is just the
dot product between the vectors, divided by n− 1:

Cov(x,y) =
1

n− 1
xTy

We can then interpret what it means for X,Y to have a covariance of zero: x is “orthogonal” to y.
Continuing with this analogy, if we normalized by the size of x and the size of y, we’d get the cosine of the
angle between them. This is the definition of the correlation coefficient, and gives the relationship between
the covariance and correlation coefficient:

Definition: The correlation coefficient between the data ordered in vector x and data in y is given
by:

rxy =
s2
xy

sxsy
=

∑n
k=1(xk −mx)(yk −my)√∑n

k=1(xk −mx)2 ·
∑n
k=1(yk −my)2

If the data in x and y have been mean subtracted, then the formula is reminiscent of something from linear
algebra:

rxy =
xTy

‖x‖ · ‖y‖
= cos(θ)

This works out so nicely because we have a 1
n−1 in both the numerator and denominator, so they cancel

each other out.
We also see immediately that rxy can only take on the real numbers between −1 and 1. Some interesting

values of rxy:

If rxy is: Then the data is:
1 Perfectly correlated (θ = 0)
0 Uncorrelated (θ = π

2 )
-1 Perfectly (negatively) correlated (θ = π)

One last comment before we leave this section: The covariance s2
xy and correlation coefficient rxy only

look for linear relationships between data sets!
For example, we know that sin(x) and cos(x), either as functions, or as data points sampled at equally

spaced intervals, will be uncorrelated, but, because sin2(x) + cos2(x) = 1, we see that sin2(x) and cos2(x)
are perfectly correlated.

This difference is the difference between the words “correlated” and “statistically independent”. Statisti-
cal independence (not defined here) and correlations are not the same thing. We will look at this difference
closely in a later section.

2.3 The Covariance Matrix

Suppose we have a collection of n columns, where each column represents data in one dimension. And
suppose each column has p elements. The p× n matrix X can be thought of as either p points in IRn or n
points in IRp. Thinking of have p points in dimension i and p points in dimension j, we can compute the
variance between those dimensions.

Continuing, we can compute the covariance between all pairings of the n dimensions resulting in an n×n
matrix (note that the diagonal entries would be the covariance of a set of data with itself- which is the
regular variance). Such a matrix is known as the covariance matrix.
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In the formulas below, we’ll assume that X has beendemean-subtracted (subtract the row representing
the mean from all rows of X). The (i, j)th entry in the covariance matrix is then defined as the covariance
between the ith and jth dimensions:

s2
ij =

1

p− 1

p∑
k=1

X(k, i) ·X(k, j)

Computing this for all i, j will result in an n× n symmetric matrix, C, for which Cij = s2
ij .

In the exercises, you’ll show that an alternative way of computing the covariance matrix is by using what
we’ll refer to as its definition below.

Definition: Let X denote a matrix of data, so that, if X is p × n, then we have p data points in IRn.
Furthermore, we assume that the data in X has been mean subtracted (so the mean in IRn is the zero
vector). Then the n× n covariance matrix associated with X is given by:

C =
1

p− 1
XTX

In the language of your choice, it is straightforward to compute the covariance matrix- but be sure to
keep in mind the dimensions.

Matlab Python R
X=rand(10,3); X=np.random.rand(10,3) X<-matrix(runif(30),nrow=10)

C=cov(X); C=np.cov(X.T,bias=False) C<-cov(X)

You might note that in Python, the default matrix arrangement is reversed, and the default number to
divide by is n rather than n− 1, unless you include the “bias” option.

2.4 Exercises

1. Compute the covariance between the following data sets:

x −1.0 −0.7 −0.4 −0.1 0.2 0.5 0.8
y −1.3 −0.7 −0.1 0.5 1.1 1.7 2.3

(2.1)

2. Let’s explore some of the things mentioned in the text. Use a computer program to verify the following:

(a) “If t is a vector of equally spaced points, the sin(t) and cos(t) (computer notation) will be uncor-
related”. Show this by example using Matlab, Python or R.

(b) Continuing, show that sin2(t) and cos2(t) are perfectly correlated (again, using Matlab, Python
or R).

(c) Take the vector t, and let y = 2t− 5. Show that the vectors t and y have a correlation of 1.

(d) Redo the previous experiment, but use any negative slope. What is the correlation coefficient?

3. Let x be a vector of data with mean x̄, and let a, b be scalars.

(a) Show, using the definition of the mean, that the mean of ax is ax̄.

(b) Similarly, find a formula for the mean of ax+ b in terms of the mean of x.

4. Let x be a vector of data with variance s2
x, and let a, b be scalars.
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(a) Show, using the definition of variance, that the variance of ax is a2s2
x. You might start with:

s2
(ax) =

1

m− 1

m∑
i=1

(axi − axi)2

(b) Similarly, find a formula for the variance of ax+ b in terms of the variance of x.

The exercises below explore the notion that the correlation tries to find linear relation-
ships between data.

5. Show that, for data in vectors x, y and a real scalar a,

Cov(ax, y) = aCov(x, y) = Cov(x, ay)

6. For a and b fixed scalars, and data in vector x find a formula for the Cov(x, ax + b) in terms of the
variance of x.

7. For a and b fixed scalars, and data in vector x, let y = ax+ b, find the correlation coefficient r2
xy and

simplify as much as possible. What do you get?

8. Let X be a p× n matrix of data, where we n columns of p data points (you may assume each column

has zero mean). Show that the (i, j)th entry of
1

p− 1
XTX is the covariance between the ith and jth

columns of X. HINT: It might be convenient to write X in terms of its columns,

X = [x1,x2, . . . ,xn]

Also show that 1
p−1X

TX is a symmetric matrix.

2.5 Line of Best Fit

In this section, we examine the simplest case of fitting data to a function. We are given p pairs of data (t is
for “target”, we’ll use y for something else):

(x1, t1), (x2, t2), . . . (xp, tp)

We wish to find a line through the data. That is, we want to find scalars m, b so that

mxi + b = ti

for each pair (xi, ti). Of course, if the data actually was on a line, we would not need p points- only two are
needed.

Therefore we assume that there is something going on so that the data is not exactly on the line- for
each point, we now have an error. We are distinguishing now between the point on the line:

yi = mxi + b

and the desired value ti. Now the error at the ith point is defined as:

(ti − yi)2 = (ti − (mxi + b))2

and the overall error is the sum of squares error (summed over the p points):

E(m, b) =

p∑
k=1

(tk − (mxk + b))2

We have now translated our problem into a Calculus problem- Find the minimum of E(m, b). Here are some
exercises to lead you to the solution:
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Exercises with the Error

1. E is a function of m and b, so the minimum value occurs where

∂E

∂m
= 0

∂E

∂b
= 0

Show that this leads to the system of equations: (the summation index is 1 to p)

m
∑

x2
k + b

∑
xk =

∑
xktk

m
∑

xk + bn =
∑

tk

2. With linear algebra, the line of best fit becomes the matrix-vector equation below that has no solution.
Therefore, we are looking for the least squares solution.

mx1 + b = t1
mx2 + b = t2
mx3 + b = t3

...
...

mxp + b = tp

⇒


x1 1
x2 1
x3 1

...
...

xp 1


[
m
b

]
=


t1
t2
...
tp

 ⇒ Ac = t

In this case, the error is the norm of the difference between the matrix product Ac = y and the known
target vector t, but usually we square that difference to get the “least squares” solution. In other
words, we try to find c that minimizes:

E(c) = ‖t− y‖2 = ‖t−Ac‖2

For now, we can solve this problem using the normal equations. That is, we will multiply both sides
of our equation by AT to get:

Ac = t ⇒ ATAc = AT t

Originally, A was p×2, so now ATA is 2×2, which we can invert. EXERCISE: Show that this system of
two equations in two variables is the same as the system we obtained by setting the partial derivatives
to zero.

3. (Toy problem) Find the line of best fit through the data:

x −1.0 −0.7 −0.4 −0.1 0.2 0.5 0.8
y −1.3 −0.7 −0.1 0.5 1.1 1.7 2.3

(2.2)

A word of caution:

The line of best fit is mathematically a unique answer. That is, given a specific set of data, we get one
answer using our technique. However, what we have not considered is whether or not the data is actually
linear!

Students of statistics will recognize that this is the issue that you spend a good amount of time studying-
tests for goodness of fit exist, but would take us too far afield for now.
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Chapter 3

Another Case Study: Genetic
Algorithms

3.1 Introduction to Genetic Algorithms

The section on Genetic Algorithms (GA) appears here because it is closely related to the problem of un-
supervised learning. Much of what follows was done in collaboration with a student, Jenna Carr, who was
working on her senior project.

It is probably easiest to think of a GA as a technique that will optimize some “fitness function”, which
is what we typically think of when we talk of biological evolution. Researchers use vocabulary that has its
roots in biology, but we will try to keep the vocab neutral.

Let’s start things off by considering how evolution works in its simplest form. We begin with some popula-
tion that has chromosomes, and these chromosomes defines how well an individual matches its environment.
By mating, chromosomes from different individuals are somehow combined to make new individuals, and a
new generation appears.

Here are components that are common to almost all forms of a GA:

• A population of individuals, each with chromosomes.

A key step is in how one translates a chromosome into a numerical string. We also need to decide what
will constitute a valid string, or valid chromosome.

For example, some practitioners will use binary strings. This works well for some problems, but in
other problems we may want to use a continuum rather than a discrete set of points.

• A fitness function.

This function uses chromosomes to measure how well an individual is “performing” in a given environ-
ment. We will need to be able to compute a real value for any given (valid) chromosome.

The overall goal of the GA is to find member(s) of the population that optimize the fitness function.

• A process by which we can select which individuals will reproduce.

• A process by which chromosomes combine to create new chromosomes.

This should also include some random mutation.

There are many different algorithms, and most differ on how one interprets the four previous items.
Before we get too abstract, we’ll work through a very simple example.
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3.2 Example: Binary Strings

Suppose our problem is to maximize the number of 1’s in a bit string of length 20. There is an easy solution
to this- The optimal string would be a string of 1’s, but let’s see how our four pieces fit together in this
problem:

1. The population: The population consists of strings of length 20, where each element of the string is a
0 or a 1. We also need the size of the population- In this case, we set it arbitrarily to 100.

2. The fitness function: The fitness function takes in a binary string of length 20, and outputs the number
of 1’s in the string.

3. A process by which individuals are selected for reproduction:

In this example, we’ll select individuals at random. Unfortunately, this is not specific enough, since
there are many ways to make a “random” selection. In this case, if individual j has fitness value f(j),
then consider the set of probabilities:

P1 =
f(1)∑100
j=1 f(j)

, P2 =
f(2)∑100
j=1 f(j)

, . . . , P100 =
f(100)∑100
j=1 f(j)

In this example, these are indeed probabilities since they are non-negative and sum to 1. Therefore,
we will define the selection process as: Select individual j with probability Pj . We should consider this
problem separately, and write a separate function that will perform this function (and we will). This
is actually a fairly standard way of selection.

Here is the Matlab code we’ll use. You might notice that it comes from code we used in the n−armed
bandit problem, where we had to select machine a using probability Pa. Here, we’ll call the function
RandChooseN.

function Action=RandChooseN(P,N)

% function Action=RandChooseN(P,N)

% Choose N numbers from 1 to length(P) using the

% probabilities in P. For example, if P=[0.1,0.9],

% we choose "1" 10% of the time, and "2" 90% of

% the time. Selection is done WITH replacement,

% so, for example, if N=3, we could return [2, 2, 2]

%Set up the bins

BinEdges=[0, cumsum(P(:)’)];

Action=zeros(1,N);

for i=1:N

x=rand;

Counts=histc(x,BinEdges);

Action(i)=find(Counts==1);

end

4. A process by which chromosomes combine to create new chromosomes:

Chromosomes will be combined in two ways: Using crossover, then using a random mutation. We’ll
define the crossover process first.

If we have two “parents”, “ma” and “pa”, each defined by a string of 20 characters, then in crossover
we choose a crossover point that is an integer between 1 and 20. Let’s call the crossover value xp.
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The two offspring will then be two strings of length 20. The first uses the first xp characters from “ma”
and the remaining characters from the corresponding values in “pa”.

Similarly, the second offspring will use the initial xp characters from “pa” and the remainder from
“ma”.

Therefore, the offspring 1 would have its front part from “ma” and back part from “pa” (split at xp).
Offspring 2 is the opposite, its front part from “pa” and back part from “ma”.

The crossover point may be the same for all parents, or it can be randomly selected for each parent.
In the code that follows, the crossover points were selected at random for each pair of parents.

Furthermore, keeping with our analogy of evolution, we also include the possibility (usually a very
small one) that mutations may occur, and they occur randomly.

There are many other ways one could perform crossover and mutation- The only caution here is that
one must ensure that the offspring are still valid chromosome strings.

3.2.1 Matlab Code for Example 1

Here is the Matlab code that implements the algorithms from the text. Save it in Matlab and run it several
times and compare the outputs.

%% Genetic Algorithm Example

%

% Problem: Define the population as binary strings of length 20,

% with the fitness function: Sum of 1’s. Use a population of

% 100 with certain probabilities defined below to see how long

% it takes to reach a string of all 1’s.

%% Setup the GA parameters

ff=inline(’sum(x,2)’); % objective function

maxit=200; % max number of iterations (for stopping)

maxcost=9999999; %Maximum allowable cost (for stopping)

popsize=100; % set population size (it is constant)

mutrate=0.001; % set mutation rate (a small probability)

lenx=20; % Length of the chromosome (20 here)

%% Create the initial population

pop=round(rand(popsize,lenx)); % random population of 1s

% and 0s (using default, 100x20)

% Initialize cost and other items to set up the main loop

cost=feval(ff,pop); % calculates population cost using ff

[cost,ind]=sort(cost,’descend’); % max element in first entry

pop=pop(ind,:); % sorts population with max cost first

probs=cost/sum(cost); %Simple normalization for probabilities.

% We’ll be tracking the following quantities for our plot:

maxc(1)=max(cost); % minc contains min of population

meanc(1)=mean(cost); % meanc contains mean of population
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%% MAIN LOOP

iga=0; % Initalize the variable used in the loop below.

% This will keep track of how many iterations we’ve

% used and will get us out of the loop at the max

while iga<maxit

iga=iga+1; % increments generation counter

% Choose mates

M=ceil(popsize/2); % number of matings

ma=RandChooseN(probs,M); % mate #1

pa=RandChooseN(probs,M); % mate #2

% ma and pa contain the *indices* of the chromosomes that will mate

% Select crossover values for each set of parents

xp=randi([1,lenx],1,M); % M integers from 1 to lenx

% In this code, crossover is different

% for each set of parents.

Temp=pop; %Just temporary storage as we perform crossover

%Crossover: One offspring will be stored in the odd indices,

% the other in the even indices.

for k=1:M

pop(2*k-1,:)=[Temp(ma(k),1:xp(k)) Temp(pa(k),xp(k)+1:20)];

pop(2*k,:)=[Temp(pa(k),1:xp(k)) Temp(ma(k),xp(k)+1:20)];

end

% Mutate the population

nmut=ceil((popsize-1)*lenx*mutrate); % total number of mutations

mrow=ceil(rand(1,nmut)*(popsize-1))+1; % row to mutate

mcol=ceil(rand(1,nmut)*lenx); % column to mutate

for ii=1:nmut

pop(mrow(ii),mcol(ii))=abs(pop(mrow(ii),mcol(ii))-1); % toggles bits

end % ii

%% The population is re-evaluated for cost

cost=feval(ff,pop); % calculates population cost using ff

[cost,ind]=sort(cost,’descend’); % max element in first entry

pop=pop(ind,:); % sorts population with max cost first

probs=cost/sum(cost); %Re-set probabilities

% We keep track of some values for graphical output:

maxc(iga+1)=max(cost);

meanc(iga+1)=mean(cost);
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%% Stopping criteria. The double bar: || is an "or"

if iga>maxit || cost(1)>maxcost

break

end

end %iga

%% Displays the output

day=clock;

disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),day(6)),0))

%disp([’optimized function is ’ ff])

format short g

disp([’popsize = ’ num2str(popsize) ’ mutrate = ’ num2str(mutrate)]);

disp([’#generations=’ num2str(iga) ’ best cost=’ num2str(cost(1))]);

fprintf(’best solution\n%s\n’,mat2str(int8(pop(1,:))));

figure(1)

iters=0:length(maxc)-1;

plot(1:(iga+1),maxc,1:(iga+1),meanc);

xlabel(’generation’);ylabel(’cost’);

In this example, we have seen how to implement one GA on a population of binary strings. In the next
section, we will consider changes if the string consists of real numbers.

3.3 GA Using Real Numbers

Consider the following problem: Find the minimum value of f over the domain 0 ≤ x ≤ 10, 0 ≤ y ≤ 10, and

f(x, y) = x sin(4x) + 1.1y sin(2y)

If one attempts to use “classical” techniques like gradient descent, then you rapidly get stuck in a local
minimum (or a local max). The graph of f is shown in Figure 3.1.

Figure 3.1: The surface and contour map for the function we will try to minimize, f(x, y) = x sin(4x) +
1.1y sin(2y).

Now we’ll work through the steps for defining the genetic algorithm:
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1. Define the population. We will have 12 individuals (that number was randomly selected). Each
chromosome will be an ordered pair of real numbers:

[x, y] 0 ≤ x ≤ 10, 0 ≤ y ≤ 10

The population will be initialized randomly.

2. Define the fitness function. The fitness function is given to us already:

f(x, y) = x sin(4x) + 1.1y sin(2y)

3. A process by which individuals are selected for reproduction:

One interesting way of putting together the probability distribution is to use rank order. For example,
suppose we have N things in order from “best” to “last”. Then we choose item j with probability

N − (j − 1)∑N
i=1 i

with maximum probability N/
∑
i and minimum probability 1/

∑
i.

For example, if we have 4 things, the probability distribution would be:

4

10
,

3

10
,

2

10
,

1

10

We’ll implement this in the Matlab script.

4. Crossover and Mutation:

This is where things get a little trickier. Here is one method that we implemented in Matlab below.

• Select the crossover point at random (in this case, the x coordinate or the y coordinate).

• The coordinate zma, zpa selected for crossover will then be updated by selecting 0 < β < 1:

zmanew = (1− β)zma + βzpa

zpanew = (1− β)zpa + βzma

• The other coordinates will remain.

• Since there are additional constraints on the coordinates, these will also be checked. That is, if
the new x coordinate is greater than 10, it will be chopped to 10. Similarly, if a coordinate is less
than zero, it will be chopped to zero.

• If selected for mutation, a random number (uniform) will be selected between 0 and 10.

Matlab Script for the Optimization

%% Script File: Optimization and GA

% Initialize the population:

Pop=10*rand(12,2);

% Stopping criteria

maxit=200; %Max number of iterations

mincost=-99999999; %Minimum cost

% Parameters:
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popsize=12;

mutrate=0.05; %Mutation rate

popKept=0.5; %Fraction of the population to keep

keep=floor(popKept*popsize); %How many individuals are kept

M=ceil((popsize-keep)/2); % number of matings; 2 mates create 2 offspring

crossprob=round(rand(maxit,1)); %0= x-coord, 1= y-coord

nmut=ceil((popsize-1)*2*mutrate); %Number of mutations

% Fitness function:

ff=’testfunction’; %The fitness function is in the file testfunction.m

% Probability distribution (won’t change in this example)

probs=(keep:-1:1)/sum(1:keep); %Probability is rank ordering

%% Initialize the population:

cost=feval(ff,Pop); %Initial costs

[cost,idx]=sort(cost); % Default sort is from small to large

Pop=Pop(idx,:);

minc(1)=min(cost); %Minimum cost, for plotting later

meanc(1)=mean(cost); %Mean cost for this population (for plotting later)

%% Main loop

iga=0;

while iga<maxit

iga=iga+1;

% Pair up and mate:

ma=RandChooseN(probs,M);

pa=RandChooseN(probs,M);

% Set up crossover and mutation:

idx2=keep+1:popsize;

beta=rand;

PopMa=Pop(ma,:); PopPa=Pop(pa,:);

if crossprob(iga)==0 %Crossover the x-coordinate

for j=1:M

Pop(idx2(2*j-1),1)=(1-beta)*PopMa(j,1)+beta*PopPa(j,1);

Pop(idx2(2*j-1),2)=PopMa(j,2);

Pop(idx2(2*j),1)=(1-beta)*PopPa(j,1)+beta*PopMa(j,1);

Pop(idx2(2*j),2)=PopPa(j,2);

end

else %Crossover the y-coordinate

for j=1:M

Pop(idx2(2*j-1),1)=PopMa(j,1);

Pop(idx2(2*j-1),2)=(1-beta)*PopMa(j,2)+beta*PopPa(j,2);

Pop(idx2(2*j),1)=PopPa(j,1);

Pop(idx2(2*j),2)=(1-beta)*PopPa(j,2)+beta*PopMa(j,2);

end

end
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% Mutation

mrow=sort(ceil(rand(1,nmut)*(popsize-1))+1);

mcol=ceil(rand(1,nmut)*2);

for ii=1:nmut

Pop(mrow(ii),mcol(ii))=10*rand;

end

% New cost, set up for next iteration:

cost=feval(ff,Pop); %Initial costs

[cost,idx]=sort(cost); % Default sort is from small to large

Pop=Pop(idx,:);

minc(iga+1)=min(cost); %Minimum cost, for plotting later

meanc(iga+1)=mean(cost); %Mean cost for this population (for plotting later)

% Stopping criteria

if iga>maxit || cost(1)<mincost

break

end

end % End of the while loop

%% Display the results

figure(1)

iters=0:length(minc)-1;

plot(iters,minc,iters,meanc,’-’);

xlabel(’generation’);ylabel(’cost’);

3.4 Example: The Knapsack Problem

Suppose you want to go on a camping trip. You’re planning on carrying no more than 20 kg of supplies. The
problem is that you cannot possibly take all the supplies that you may want. An additional worry is that
not every is kilogram is equal- For example, taking the tent should be much more important than taking a
novel.

Therefore, you set up a scale on which you rate the relative importance of each item. Here is your list in
Table 3.1.

Now we need to translate this problem into a GA (and there are many ways you might do it). Let’s see
if we can start.

One way to define the fitness function may be the following. The fitness value will be the sum of the
values, if the weight is less than (or equal to) 20 kg. Otherwise, the fitness will take a value of −1. We will
then try to maximize the fitness function.

One way to set things up is to make three strings of length 12 (for the number of items we could pack).
One vector would store the values, one vector would store the weights, and the third vector could be binary,
with 1 meaning “include this”, and 0 meaning “do not include this”.

Since we have 12 items total, we might define a chromosome as a vector with 1 (include this item), or 0
(do not include).
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Exercises with the Knapsack Problem

We’re going to go through the first example of a GA, the example with binary strings of length 20, and
modify it to try to solve the knapsack problem.

Here are some suggestions for changes:

1. The objective function won’t be so simple this time. Change the line:

ff=inline(sum(x,2)); % objective function

so that we can write the objective function as an M-file (like the second example).

In the objective function, if X is a matrix that is 20×12 of zeros and ones, and val is a 1×12 vector of
the “values” of each item, then what does the following command do? (You might look up the repmat

command and what the sum command does if you use it like: sum(A,2)).

sum(X.*repmat(val, numpop, 1), 2)

2. Some of the other parameters:

• Change the maximum number of iterations to 250

• We’ll have a population size of 20, and we’ll keep half. (The second example shows this).

• The mutation rate will be about 10%

3. We’ll keep the crossover technique and the way of selecting mates the same as for the binary strings.

Item Value Weight
bug repellent 12 2
camp stove 5 4
canteen (full) 10 7
clothes 11 5
dried food 50 3
first aid kit 15 3
flashlight 6 2
novel 4 2
rain gear 5 2
sleeping bag 25 3
tent 20 11
water filter 30 1

Table 3.1: Camping Supplies, with Weight and Value
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Chapter 4

Linear Algebra

When you work with numerical data, it is naturally organized as a (possibly multidimensional) matrix.
Therefore, linear algebra provides the natural context for working with data, and the theory of linear algebra
can also give us methods for performing an analysis of that data.

First up is a little review.
It can be argued that all of linear algebra can be understood using the four fundamental subspaces

associated with a matrix. Because they form the foundation on which we later work, we want an explicit
method for analyzing these subspaces- That method will be the Singular Value Decomposition (SVD).

Finally, the SVD will give us the tools for performing linear regression analysis, projection analysis, and
Principle Components Analysis (PCA).

Whenever we are analyzing new data sets, we can look to the SVD and PCA as the first tools we use to
see if we can extract “features” from the data (more on that later).

4.1 Representation, Basis and Dimension

Let us quickly review some notation and basic ideas from linear algebra. First and foremost, we have to
define the vector space that we’re working with. For example, our “vectors” could be column vectors with
n elements in them. Our “vectors” could actually be matrices that are all m× n. The vector space defines
the background to which all of our other analysis takes place, so it’s an important consideration.

We will typically define our vector space V by constructing a basis for it, which is a linearly indepen-
dent and spanning set of vectors, and the dimension of V is the number of its basis vectors.

Vector Space IRn

Suppose the vector space is IRn, and let H be a subspace of IRn with basis vectors in set B. Since we’re in
IRn, we can organize these vectors as columns in a matrix B (so B would be n× k):

B = {v1,v2, . . . ,vk} , B = [v1,v2, . . . ,vk] .

Then every vector in H can be written as a linear combination of the basis vectors. That is, if x ∈ H,

x = c1v1 + . . .+ ckvk

An important observation is that the linear combination you see above can be written in matrix-vector form:

x = c1v1 + . . .+ ckvk = B[x]B (4.1)

where (c1, c2, . . . , ck)T = [x]B is called the coordinates of x with respect to the basis B.
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Now, consider that every vector in H can be identified with a point in IRk, and that defines a function
that we’ll call the coordinate mapping:

x =


x1

x2

...
xn

 ∈ IRn ←→ [x]B =

 c1
...
ck

 ∈ IRk

If k is small (with respect to n) we think of c is the low dimensional representation of the vector x, and
that H is isomorphic to IRk (Isormorphic meaning one to one and onto linear map is the isormorphism)

Example 4.1.1. If H = span (v1,v2) where v1,2 ∈ IR5, then H is isomorphic to the plane IR2 - but is not
equal to the plane. The isomorphism is the coordinate mapping (call it F ). For example, if x ∈ H, then

x = c1v1 + c2v2

and F (x) = (c1, c2) ∈ IR2.

Computing the Coordinates

Generally, finding the coordinates of x with respect to an arbitrary basis (as columns of a matrix V ) means
that we have to solve the matrix equation for [x]B:

x = B[x]B.

However, if the columns of B are actually orthogonal, then it is very simple to compute the coordinates.
We’ll start with our vector equation: x = c1v1 + · · ·+ ckvk. Now take the inner product of both sides with
vj :

x · vj = c1v1 · vj + · · ·+ cjvj · vj + · · ·+ ckvk · vj
All the dot products are 0 (due to orthogonality) except for the dot product with x and vj leading to the
formula:

x · vj = 0 + 0 + . . .+ cjvj · vj + · · ·+ 0 ⇒ cj =
x · vj
vj · vj

And we remember that this is the scalar projection of x onto vj , which we’ve seen in Calc III and linear
algebra:

Projv(u) =
u · v
v · v

v

Therefore, we can think of the linear combination as the following, which simplifies if we use orthonormal
basis vectors:

x = Projv1(x) + Projv2(x) + · · ·+ Projvk(x) (4.2)

= (x · v1)v1 + (x · v2)v2 + · · ·+ (x · vk)vk

IMPORTANT NOTE: In the event that x is NOT in H, then Equation 4.2 gives the (orthogonal) projection
of x into H.

The important conclusion we want to make is the following: Out of all possible bases we might choose
for a subspace of a vector space, the “best” one is one that is orthonormal, since the coordinates of a vector
are easy to compute using the inner product. In fact, if the space is a subspace of IRn and the (orthonormal)
basis is stored as the columns of a matrix B (n× k in our previous example), then the coordinates of any x
can be simply computed as:

[x]B = BTx

Of course, you might be noting that in that case,

x = B[x]B = BBTx

This matrix, BBT , is a very interesting one- One which we examine more closely in the next section.
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Projections

Consider the following example. If a matrix U = [u1, . . . ,uk] has orthonormal columns (so if U is n × k,
then that requires k ≤ n), then UTU is k × k, and can be computed as:

UTU =

 uT1
...

uk

 [u1, . . . ,uk] =


uT1 u1 uT1 u2 · · · uT1 uk
uT2 u1 uT2 u2 · · · uT2 uk

...
...

uTk u1 uTk u2 · · · uTk uk

 =


1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

 = Ik

But UUT (which is n × n) is NOT the identity if k 6= n (If k = n, then the previous computation proves
that the inverse is the transpose).

Here is a computation one might make for UUT (these are OUTER products):

UUT = [u1, . . . ,uk]

 uT1
...

uk

 = u1u
T
1 + u2u

T
2 + · · ·+ uku

T
k

Example 4.1.2. Consider the following computations:

U =

[
1
0

]
UTU = 1 UUT =

[
1 0
0 0

]
If UUT is not the identity, what is it? Consider the following computation:

UUTx = u1u
T
1 x + u2u

T
2 x + · · ·+ uku

T
k x

= u1(uT1 x) + u2(uT2 x) + · · ·+ uk(uTk x)

which we recognize as the projection of x into the space spanned by the orthonormal vectors of U . In the
previous section, we called this matrix B, but it is common notation that a matrix with orthonormal vectors
is typically denoted by U .

Just to repeat then: If we have a set of orthonormal vectors in a matrix U forming a basis for some
subspace H, then if x ∈ H,

x = U [x]U = U(UTx) = (UUT )x

However, if x is not completely contained in H, then

ProjH(x) = UUTx

And of course, if n > k and U is n× k, then UTU = I.

Notes about Programming

Programming in Matlab

• Find a random matrix with orthonormal columns

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

X=randn(9,6);

[Q,R]=qr(X,0);

Q’*Q % Should be 6 x 6 identity matrix.
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• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

X=[1,0;0,1;1,0]

RowNorms=sqrt(sum(X.*X));

C=X./RowNorms

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.

– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

Here it is in Matlab, using the Q from the QR decomposition.

x=rand(9,1);

Coords=Q(:,1:3)’*x;

Projx=Q(:,1:3)*Coords;

Check=Q*(Q’*Projx); % Don’t compute QQ^T first!

norm(Check-Projx); %Should be close to zero

Programming in Python

• Find a random matrix with orthonormal columns.

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

A=np.random.randn(9,6)

q,r=np.linalg.qr(A)

q.shape #Answer is (9,6)

D=np.matmul(q.T,q) #Should be 6 x 6 identity

• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

import numpy as np

import numpy.linalg

X=np.array([[1, 0],[0,1],[1,0]])

RowNorms=np.linalg.norm(X,axis=0)

C=X/RowNorms[np.newaxis,:]

Output:

array([[0.70710678, 0. ],

[0. , 1. ],

[0.70710678, 0. ]])

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.
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– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

import numpy as np

import numpy.linalg

x=np.random.rand(9,1) #Random vector in R^9

A=np.random.rand(9,3) #We’ll go with a 3-d subspace in R^9

Q,R=np.linalg.qr(A)

Q.shape #This checks the dimensions- This is 9 x 3

Coords=np.matmul(Q.T,x) #This is a 3 x 1 vector, Q^Tx

xProjected=np.matmul(Q,Coords) #xProjected is 9 x 1

#Optional: Check by projecting the projection (shouldn’t change)

Check=np.matmul(Q,np.matmul(Q.T,xProjected))

np.linalg.norm(xProjected-Check) #Returns something like 2 x 10^(-16)

Programming in R

• Find a random matrix with orthonormal columns

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

A<-matrix(rnorm(54),nrow=9) # rnorm are random, normal dist.

X=qr(A) # X is a QR-object

Q<-qr.Q(X) # Extract the matrix Q

dim(Q) # Check dimensions on Q (returns (9,6))

H<- t(Q) %*% Q # Compute Q^TQ to get 6 x 6 identity

• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

X<-matrix(c(1,1,0,0,1,0),3,2)

N<-sqrt(colSums(X^2)

C<-sweep(X,2,N,FUN=’/’)

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.

– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

> x<-matrix(runif(9),ncol=1)

> A<-matrix(runif(27),ncol=3)

> X<-qr(A)

> Q<-qr.Q(X) #This is a bit awkward
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> Coords<-t(Q)%*%x

> xProjected<-Q %*% Coords

> Check=Q %*% (t(Q) %*% xProjected)

> y=xProjected-Check

> sqrt(sum(y^2))

[1] 5.360492e-16

Exercises

1. Let the subspace H be formed by the span of the vectors v1,v2 given below. Given the point x1,x2

below, find which one belongs to H, and if it does, give its coordinates. (NOTE: The basis vectors are
NOT orthonormal)

v1 =

 1
2
−1

 v2 =

 2
−1

1

 x1 =

 7
4
0

 x2 =

 4
3
−1


2. Show that the plane H defined by:

H =

α1

 1
1
1

+ α2

 1
−1

0

 such that α1, α2 ∈ IR


is isormorphic to IR2.

3. Let the subspace G be the plane defined below, and consider the vector x, where:

G =

α1

 1
3
−2

+ α2

 3
−1

0

 such that α1, α2 ∈ IR

 x =

 1
0
2


(a) Find the matrix (UUT in our notes) that takes an arbitrary vector and projects it (orthogonally)

to the plane G.

(b) Find the orthogonal projection of the given x onto the plane G.

(c) Find the distance from the plane G to the vector x.

4. If the low dimensional representation of a vector x is [9,−1]T and the basis vectors are [1, 0, 1]T and
[3, 1, 1]T , then what was the original vector x? (HINT: it is easy to compute it directly)

5. If the vector x = [10, 4, 2]T and the basis vectors are [1, 0, 1]T and [3, 1, 1]T , then what is the low
dimensional representation for x?

6. Let a = [−1, 3]T . Find a square matrix P so that Px is the orthogonal projection of x onto the span
of a.

7. Refer to one of the programming languages (Matlab/Python/R), and reproduce finding an arbitrary
10 × 4 matrix with orthonormal columns. Use a random x ∈ IR10, and first find the coordinates of x
with respect to the four columns in Q, then compute the orthogonal projection of x into the subspace
spanned by the first four columns of Q.

8. To prove that we have an orthogonal projection, the vector Proju(x) − x should be orthogonal to u.
Use this definition to show that our earlier formula was correct- that is,

Proju(x) =
x · u
u · u

u

is the orthogonal projection of x onto u.
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9. Continuing with the last exercise, show that UUTx is the orthogonal projection of x into the space
spanned by the columns of U by showing that (UUTx− x) is orthogonal to ui for any i = 1, 2, · · · , k.

4.2 The Four Fundamental Subspaces

Given any m× n matrix A, we consider the mapping A : IRn → IRm by:

x→ Ax = y

The four subspaces allow us to completely understand the domain and range of the mapping. We will first
define them, then look at some examples.

Definition 4.2.1. The Four Fundamental Subspaces

• The row space of A is a subspace of IRn formed by taking all possible linear combinations of the rows
of A. Formally,

Row(A) =
{
x ∈ IRn |x = ATy y ∈ IRm

}
• The null space of A is a subspace of IRn formed by

Null(A) = {x ∈ IRn |Ax = 0}

• The column space of A is a subspace of IRm formed by taking all possible linear combinations of the
columns of A.

Col(A) = {y ∈ IRm | y = Ax ∈ IRn}

The column space is also the image of the mapping. Notice that Ax is simply a linear combination of
the columns of A:

Ax = x1a1 + x2a2 + · · ·+ xnan

• Finally, we define the null space of AT can be defined in the obvious way (see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping in a particularly nice way.
Below we give a “cartoon” of the relationship between the four subspaces. On the left is the domain of the
matrix mapping, and it represents IRn. On the right is the codomain, and it represents IRm. The spaces
can apparently be split into two subspaces each. In the domain, these are the Row and Null spaces. In the
codomain, these are the Column space and the null space of AT (we don’t use this one much).
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In the diagram, notice that the axes are representing subspaces. The picture suggests that the two spaces
that split our domain and range are actually orthogonal subspaces- and that is true.

Theorem 4.2.1. Let A be an m× n matrix. Then

• The nullspace of A is orthogonal to the row space of A

• The nullspace of AT is orthogonal to the columnspace of A

Proof: We’ll prove the first statement, the second statement is almost identical to the first. To prove
the first statement, we have to show that if we take any vector x from nullspace of A and any vector y from
the row space of A, then x · y = 0.

Alternatively, if we can show that x is orthogonal to each and every row of A, then we’re done as well
(since y is a linear combination of the rows of A).

In fact, now we see a strategy: Write out what it means for x to be in the nullspace using the rows of A.
For ease of notation, let aj denote the jth row of A, which will have size 1× n. Then:

Ax = 0 ⇒


a1

a2

...
am

x =


a1x
a2x

...
amx

 = 0

Therefore, the dot product between any row of A and x is zero, so that x is orthogonal to every row of A.
Therefore, x must be orthogonal to any linear combination of the rows of A, so that x is orthogonal to the
row space of A. �

Before going further, let us recall how to construct a basis for the column space, row space and nullspace
of a matrix A. We’ll do it with a particular matrix:

Example 4.2.1. Construct a basis for the column space, row space and nullspace of the matrix A below
that is row equivalent to the matrix beside it, RREF(A):

A =

 2 0 −2 2
−2 5 7 3

3 −5 −8 −2

 RREF(A) =

 1 0 −1 1
0 1 1 1
0 0 0 0


The first two columns of the original matrix form a basis for the columnspace (which is a subspace of IR3):

Col(A) = span


 2
−2

3

 ,
 2
−2

3


A basis for the row space is found by using the row reduced rows corresponding to the pivots (and is a
subspace of IR4). You should also verify that you can find a basis for the null space of A, given below (also
a subspace of IR4). If you’re having any difficulties here, be sure to look it up in a linear algebra text:

Row(A) = span




1
0
−1

1

 ,


0
1
1
1


 Null(A) = span




1
−1

1
0

 ,

−1
−1

0
1




We will often refer to the dimensions of the four subspaces. We recall that there is a term for the
dimension of the column space- That is, the rank.

Definition 4.2.2. The rank of a matrix A is the number of independent columns of A.
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In our previous example, the rank of A is 2. Also from our example, we see that the rank is the dimension
of the column space, and that this is the same as the dimension of the row space (all three numbers correspond
to the number of pivots in the row reduced form of A). Finally, a handy theorem for counting is the following.

The Rank Theorem. Let the m× n matrix A have rank r. Then

r + dim (Null(A)) = n

This theorem says that the number of pivot columns plus the other columns (which correspond to free
variables) is equal to the total number of columns.

Example 4.2.2. The Dimensions of the Subspaces.
Given a matrix A that is m×n with rank k, then the dimensions of the four subspaces are shown below.

• dim (Row(A)) = k

• dim (Null(A)) = n− k

• dim (Col(A)) = k

• dim
(
Null(AT )

)
= m− k

There are some interesting implications of these theorems to matrices of data- For example, suppose A
is m × n. With no other information, we do not know whether we should consider this matrix as n points
in IRm, or m points in IRn. In one sense, it doesn’t matter! The theorems we’ve discussed shows that the
dimension of the columnspace is equal to the dimension of the rowspace. Later on, we’ll find out that if
we can find a basis for the columnspace, it is easy to find a basis for the rowspace. We’ll need some more
machinery first.

4.3 Exercises

In the exercises below, recall that the usual norm for a vector is the Euclidean norm, or the 2−norm, which
is defined as:

‖x‖ =
√
x1

1 + x2
2 + · · ·x2

n =
√

xTx

1. Show that Null(AT ) ⊥ Col(A). Hint: You may use what we already proved.

2. If A is m× n, how big can the rank of A possibly be?

3. Show that multiplication by an orthogonal matrix preserves lengths: ‖Qx‖2 = ‖x‖2 (Hint: Use prop-
erties of inner products). Conclude that multiplication by Q represents a rigid rotation.

4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal vectors {xi}

‖
n∑
i=1

xi‖2 =

n∑
i=1

‖xi‖2

The case where n = 1 is trivial, so you might look at n = 2 first. Try starting with

‖x + y‖2 = (x + y)T (x + y) = · · ·

and then simplify to get ‖x‖2 + ‖y‖2. Now try the induction step on your own.

5. Let A be an m × n matrix where m > n, and let A have rank n. Let y, ŷ ∈ IRm, such that ŷ
is the orthogonal projection of y onto the column space of A. We want a formula for the matrix
P : IRm → IRm so that Py = ŷ.

The following image shows the relevant subspaces:
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(a) Why is the projector not P = AAT ?

(b) Since ŷ − y is orthogonal to the column space of A, show that

AT (ŷ − y) = 0 (4.3)

(c) Show that there exists x ∈ IRn so that Equation (4.3) can be written as:

AT (Ax− y) = 0 (4.4)

(d) Argue that ATA (which is n× n) is invertible, so that Equation (13.2) implies that

x =
(
ATA

)−1
ATy

(e) Finally, show that this implies that

P = A
(
ATA

)−1
AT

Note: If A has rank k 6= n, then we will need something different, since ATA will not be full rank.
The missing piece is the singular value decomposition, to be discussed later.

6. The Orthogonal Decomposition Theorem: if x ∈ IRn and W is a (non-zero) subspace of IRn, then x
can be written uniquely as

x = w + z

where w ∈W and z ∈W⊥.

To prove this, let {ui}pi=1 be an orthonormal basis for W , define w = (x · u1)u1 + . . . + (x · up)up,
and define z = x−w. Then:

(a) Show that z ∈W⊥ by showing that it is orthogonal to every ui.

(b) To show that the decomposition is unique, suppose it is not. That is, there are two decompositions:

x = w1 + z1, x = w2 + z2

Show this implies that w1−w2 = z2−z1, and that this vector is in both W and W⊥. What can
we conclude from this?

7. Use the previous exercises to prove the The Best Approximation Theorem If W is a subspace of
IRn and x ∈ IRn, then the point closest to x in W is the orthogonal projection of x into W .
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4.4 The Decomposition Theorems

The matrix factorization that arises from an eigenvector/eigenvalue decomposition is useful in many appli-
cations, so we’ll briefly review it here and build from it until we get to our main goal, the Singular Value
Decomposition.

4.4.1 The Eigenvector/Eigenvalue Decomposition

First we have a basic definition:

Let A be an n× n matrix. If there exists a scalar λ and non-zero vector v so that

Av = λv

then we say that λ is an eigenvalue and v is an associated eigenvector.

An equivalent formulation of the problem is to solve Av − v = 0, or, factoring v out,

(A− λI)v = 0

This equation always has the zero solution (letting v = 0), however, we need to have non-trivial solutions,
and the only way that will happen is if A− λI is non-invertible, or equivalently,

det(A− λI) = 0

which, when multiplied out, is a polynomial equation in λ that is called the characteristic equation.

Therefore, we find the eigenvalues first, then for each λ, there is an associated subspace- The null space
of A− λI, or the eigenspace associated with λ, denoted by Eλ.

The way to finish the problem is to give a “nice” basis for the eigenspace- If you’re working by hand, try
one with integer values. If you’re on the computer, it is often convenient to make them unit vectors.

Some vocabulary associated with eigenvalues: Solving the characteristic equation will mean that we can
have repeated solutions. The number of repetitions is the algebraic multiplicity of λ. On the other hand, for
each λ, we find the eigenspace which will have a certain dimension- The dimension of the eigenspace is the
geometric multiplicity of λ.

Examples:

1. Compute the eigenvalues and eigenvectors for the 2× 2 identity matrix.

SOLUTION: The eigenvalue is 1 (a double root), so the algebraic multiplicity of 1 is 2.

On the other hand, if we take A− λI, we simply get the zero matrix, which implies that every vector
in IR2 is an eigenvector. Therefore, we can take any basis of IR2 is a basis for E1, and the geometric
multiplicity is 2.

2. Consider the matrix [
1 2
0 1

]
Again, the eigenvalue 1 is a double eigenvalue (so the algebraic multiplicity is 2), but solving (A−λI)v =
0 gives us:

2v2 = 0 ⇒ v2 = 0

That means v1 is free, and the basis for E1 is [1, 0]T . Therefore, the algebraic multiplicity is 1.
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Definition: A matrix for which the algebraic and geometric multiplicities are not equal is called defective.

There is a nice theorem relating eigenvalues:

Theorem: If X is square and invertible, then A and X−1AX have the same eigenvalues.

Sometimes this method of characterizing eigenvalues in terms of the determinant and trace of a matrix:

det(A) = Πn
i=1λi trace(A) =

∞∑
i=1

λi

Symmetric Matrices and the Spectral Theorem

There are some difficulties working with eigenvalues and eigenvectors of a general matrix. For one thing,
they are only defined for square matrices, and even when they are defined, we may get real or complex
eigenvalues.

If a matrix is symmetric, beautiful things happen with the eigenvalues and eigenvectors, and it is sum-
marized below in the Spectral Theorem.

The Spectral Theorem: If A is an n× n symmetric matrix, then:

1. A has n real eigenvalues (counting multiplicity).

2. For each distinct λ, the algebraic and geometric multiplicities are the same.

3. The eigenspaces are mutually orthogonal- both for distinct eigenvalues, and we’ll take each Eλ to have
an orthonormal basis.

4. A is orthogonally diagonalizeable, with D = diag(λ1, λ2, . . . , λn). That is, if V is the matrix whose
columns are the (othornormal) eigenvectors of A, then

A = V DV T

Some remarks about the Spectral Theorem:

• If a matrix is real and symmetric, the Spectral Theorem says that its eigenvectors form an orthonormal
basis for IRn.

• The first part is somewhat difficult to prove in that we would have to bring in more machinery than
we would like. If you would like to see a proof, it comes from the Schur Decomposition, which is given,
for example, in “Matrix Computations” by Golub and Van Loan.

The following is a proof of the third part. Supply justification for each step: Let v1, v2 be eigenvectors
from distinct eigenvalues, λ1, λ2. We show that v1 · v2 = 0:

λ1v1 · v2 = (Av1)Tv2 = vT1 A
Tv2 = vT1 Av2 = λ2v1 · v2

Now, (λ1 − λ2)v1 · v2 = 0.

The Spectral Decomposition: Since A is orthogonally diagonalizable, then

A = (q1 q2 . . . qn)


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn



qT1
qT2
...
qTn
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so that:

A = (λ1q1 λ2q2 . . . λnqn)


qT1
qT2
...
qTn


so finally:

A = λ1q1q
T
1 + λ2q2q

T
2 + . . .+ λnqnq

T
n

That is, A is a sum of n rank one matrices, each of which is a projection matrix.

Exercises

1. Prove that if X is invertible and matrix A is square, then A and X−1AX have the same eigenvalues.

2. Programming Exercise: Verify the spectral decomposition for a symmetric matrix. Here are ex-
amples in Matlab, Python and R. First, we’ll construct a random symmetric 6× 6 matrix, then we’ll
compute the eigenvalues and eigenvectors.

• Matlab:

%Construct a random, symmetric, 6 x 6 matrix:

N=6;

Atemp=rand(N,N);

A=(Atemp+Atemp’)/2; %A is symmetric

%Compute the eigenvalues of A:

[Q,L]=eig(A); %NOTE: A = Q L Q’

%L is a diagonal matrix

%Now form the "spectral sum"

S=zeros(6,6);

for i=1:6

S=S+L(i,i)*Q(:,i)*Q(:,i)’;

end

max(max(S-A))

Note that the maximum of S−A should be a very small number! (By the spectral decomposition
theorem).

• Python:

import numpy as np

import numpy.linalg

N=6;

Atemp=np.random.rand(N,N)

A=(Atemp+Atemp.T)/2 #Makes A symmetric

D,V=numpy.linalg.eig(A)

S=np.zeros((6,6))

for i in range(0,6):

S=S+D[i]*np.outer(V[:,i],V[:,i])
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print(numpy.linalg.norm(A-S,’fro’))

• R:

A<-matrix(runif(36),ncol=6)

A<-(A+t(A))/2 #Makes A symmetric

P<-eigen(A) #Creates a structure holding info

D<-P$values

V<-P$vectors

S=matrix(0,nrow=6,ncol=6)

for (i in 1:6){

S=S+D[i]*( V[,i] %*% t(V[,i]) )

}

print(norm(A-S,"F"))

4.4.2 The Singular Value Decomposition

There is a special matrix factorization that is extremely useful, both in applications and in proving theorems.
This is mainly due to two facts, which we shall investigate in this section: (1) We can use this factorization
on any matrix, (2) The factorization defines explicitly the rank of the matrix, and gives orthonormal bases
for all four fundamental subspaces of A.

In what follows, assume that A is an m×n matrix (so A maps IRn to IRm and is not necessarily square).
We’ll build the factorization by using the Spectral Theorem twice.

Step 1. Although A itself is not symmetric, ATA is n × n and symmetric, so the Spectral Theorem applies,
and we define an n× n orthonormal matrix V and diagonal matrix D1 (with eigenvalues λ along the
diagonal): using that theorem:

ATA = V DV T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 2. Similarly, the m × m matrix AAT is also symmetric, and so applying the Spectral Theorem again
defines an m×m orthonormal matrix U and diagonal matrix D2 such that

AAT = UD2U
T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 3. Later, we will show that the non-zero diagonal elements of D1 and D2 are identical. Assuming the
rank of A to be k, we’ll define the singular values of A as:

σi =

{ √
λi if 1 ≤ i ≤ k
0 for the remaining values

where λi is the ith diagonal element of D1 or D2. The m × n matrix Σ is defined to be the m × n
diagonal matrix with singular values along the diagonal (ordered from largest to smallest).

Theorem The Singular Value Decomposition (SVD) Let A be any m× n matrix of rank k. Then we can
factor the matrix A as the following product:

A = UΣV T

where U is an orthogonal m×m matrix, Σ is a diagonal m× n matrix, and V is an orthogonal n× n
matrix. The columns of U are called the left singular vectors and the columns of V are called the right
singular vectors. Further, there are exactly k non-zero singular values of A.
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Before we get to the exercises, there is a different way of expressing the SVD that is similar to our spectral
decomposition. Recall that the rank is k:

A = UΣV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

Please note that this is a sum of k matrices, not scalars- That is, we’re computing outer products, σiuiv
T
i

is an m× n matrix.

4.5 Exercises

In the exercises below, we’ll look more closely at the SVD and the relationships between the vectors in U and
V . As you’re working through these, be sure to keep in mind the dimensions of the objects you’re working
with.

For all of the exercises, assume that A is m× n with rank k, and the SVD of A is UΣV T .

1. Show that if λ is an eigenvalue of ATA, then λ is also an eigenvalue of AAT .

Hint: If λ is an eigenvalue of ATA with eigenvector v, then ATAv = λv. Now what equation must be
true if λ is an eigenvalue of AAT ?

2. There is a beautiful relationship between the column vectors of U and V . We will assume that A is
m× n with rank k, and A = UΣV T is the SVD of A. Then:

Avi = σiui and ATui = σivi

NOTE: The importance of this is that, if you know the left singular vectors, then you can compute the
right singular vectors.

HINT: You might start with Avi, then recall that A = UΣV T , which can be written as a sum of k
matrices. The proof of the second equation is similar.

3. We said that σi =
√
λi. Here we prove that λi ≥ 0, so that the singular values are always real:

Show that λi ≥ 0 for i = 1..n by showing that ‖Avi‖2 = λi. HINT: As a starting point, you might
rewrite

‖Avi‖2 = (Av)TAv

4. Prove that, if vi and vj are distinct eigenvectors of ATA, then their corresponding images, Avi and
Avj , are orthogonal.

5. Prove that, if x = α1v1 + . . . αnvn, then ‖Ax‖2 = α2
1λ1 + . . . + α2

nλn. (You might check the hint in
#3).

6. Let W be the subspace generated by the basis {vj}nj=k+1, where vj are the eigenvectors associated

with the zero eigenvalues of ATA (therefore, we are assuming that the first k eigenvalues are NOT
zero). Show that W = Null(A).

Hint: To show this, take an arbitrary vector x from W . Rather than showing directly that Ax = 0,
instead show that the magnitude of Ax is zero. We also need to show that if we take any vector from
the nullspace of A, then it is also in W .

7. Prove that if the rank of ATA is r, then so is the rank of A.

Hint: How does the previous exercise help?

8. Compute the SVD by hand of the following matrices:

A1 =

(
1 1
0 0

)
A2 =

 0 2
0 0
0 0


(Hint: ATA and AAT are symmetric matrices.)
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Figure 4.1: The SVD of A ([U,S,V]=svd(A)) completely and explicitly describes the 4 fundamental subspaces
associated with the matrix, as shown. We have a one to one correspondence between the rowspace and
columnspace of A, the remaining v’s map to zero, and the remaining u’s map to zero (under AT ).

4.6 Notes about the SVD

The SVD computes a basis for all 4 fundamental subspaces for matrix A. To be more specific, let A = UΣV T

be the SVD which has rank k. Be sure that the singular values are ordered from highest to lowest. Then:

1. A basis for the columnspace of A, Col(A) is {ui}ki=1

2. A basis for nullspace of A, Null(A) is {vi}ni=k+1

3. A basis for the rowspace of A, Row(A) is {vi}ki=1

4. A basis for the nullspace of AT , Null(AT ) is {ui}mi=k+1

Those are the basis vectors, but does σi also have some geometric interpretation? Yes- Recall that
Avi = σiui. Therefore, we can think of each σi as either a stretching or contraction factor along each vi
(which turns into ui.

The SVD is one of the premier tools of linear algebra primarily because it allows us to completely reveal
everything we need to know about a matrix mapping: The rank, the basis of the nullspace, a basis for the
column space, the basis for the nullspace of AT , and of the row space. See Figure 4.1.

Lastly remembering that matrix multiplication is function composition, and multiplication by an orthog-
onal matrix represents a “rotation”, the SVD provides a means of decomposing any linear mapping into two
“rotations” and a scaling. This will become important later when we try to deduce a mapping matrix from
data.

4.6.1 The Reduced (or “economy-size”) SVD

If you have a matrix A that is 50000× 3, you should NOT ask for the complete SVD decomposition unless
you really, really mean it.

Why? Think about the sizes of your matrices- The matrix U would be 50000 × 50000, which is very
large, and most of which is not needed. Indeed, the rank of your matrix is at most 3, so there are only at
most three columns of your matrix that are really needed (unless again, you specifically require the basis for
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the nullspace of AT ). Instead, what you want to compute is called the Reduced SVD (or the economy-size
SVD).

Definition: The Reduced SVD

Let A be m× n with rank k. Then we can write:

A = Ũ Σ̃Ṽ T

where Ũ is an m×k matrix with orthogonal columns, Σ̃ is an k×k square matrix, and Ṽ is an n×k matrix.

Most of the time we’ll only need the reduced SVD- The only difference is that we’re stripping away the
two nullspaces from the set of four fundamental subspaces. We’ll see an example comparing the full with
the reduced SVD below.

Remarks on some language: The reader will see several ways of referring to the “non-full” SVD.
For example, there is reduced SVD, truncated SVD, and thin SVD to name three. I typically refer to the
reduced SVD by using the rank of the matrix k to define matrix sizes (as above). If m > n, and we use n to
define the sizes, then the decomposition is referred to as the “thin SVD” (Golub and Van Loan). However,
computer software rarely will compute the rank of the matrix unless requested, so they actually compute
the thin SVD, but will refer to it as the reduced SVD. The moral of the story is to be sure you know which
version it is that you’re using!

4.7 Programming with the SVD

Here, we’ll perform some computations with a small, 5 × 3 matrix to illustrate some of the formulas we’ve
been working with. We’ll make the matrix have rank 2, then we’ll compare the full and reduced SVD
formulas. For this example, we’ll take

A =


−1 2 4

1 0 −2
0 1 1
1 3 1
1 2 0


Now, the full SVD would look like UΣV T , where U,Σ, and V are below (resp):

0.78 0.35 −0.38 −0.35 −0.06
−0.28 −0.45 −0.82 −0.19 −0.03

0.25 −0.05 −0.23 0.63 0.69
0.46 −0.60 0.11 0.38 −0.52
0.21 −0.55 0.34 −0.54 0.49




5.68 0 0
0 3.42 0
0 0 0
0 0 0
0 0 0


 −0.07 −0.57 −0.82

0.63 −0.66 0.41
0.77 0.49 −0.41



The reduced SVD would strip away the nullspaces, leaving us with Ũ , Σ̃, Ṽ below (resp):
0.78 0.35
−0.28 −0.45

0.25 −0.05
0.46 −0.60
0.21 −0.55


[

5.68 0
0 3.42

] −0.07 −0.57
0.63 −0.66
0.77 0.49



Secondly, let’s look at the decomposition we discussed a few pages ago. That was:

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

In our case, k = 2, and we’ll compute this using our three computer languages as a check.
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Matlab and the SVD

The full command is [U,S,V]=svd(A), where A = USV T . For the reduced SVD, add a zero in the list of
arguments, [U,S,V]=svd(A,0). Then here’s the script using our example matrix A:

A=[-1 2 4;1 0 -2;0 1 1;1 3 1;1 2 0];

[U,S,V]=svd(A);

Temp=S(1,1)*U(:,1)*V(:,1)’+S(2,2)*U(:,2)*V(:,2)’;

norm(A-Temp,’fro’)

% We could compute "Temp" as:

Temp2=U(:,1:2)*S(1:2,1:2)*V(:,1:2)’;

norm(A-Temp2,’fro’)

Side note: The ’fro’ part of the norm is short for “Frobenius”. The Frobenius norm of a matrix is like
treating the whole matrix as one big vector, then applying the Euclidean norm. That is, take every element,
square it, then sum those and take the square root of the result.

Python and the SVD

Quick note: After working with Python and matrices for a bit, I see that in Python 3.5 and later, the @

symbol is used for matrix multiplication, so I’ll use that below rather than np.matmul.
As a side note, if we want columns indexed as i to j from array A, use the notation A[:,i:j+1]. So the

first two columns would be A[:,0:2], where columns 0 and 1 are extracted.

import numpy as np

A=np.array([[-1,2,4],[1,0,-2],[0,1,1],[1,3,1],[1,2,0]])

U,S,VT=np.linalg.svd(A,full_matrices=0)

Temp=S[0]*U[:,:1] @ VT[:1,:] + S[1]*U[:,1:2] @ VT[1:2,:]

# We could compute Temp as:

Temp2=U[:,0:2] @ np.diag(S[:2]) @ VT[0:2,:]

R and the SVD

A<-cbind(c(-1,1,0,1,1),c(2,0,1,3,2),c(4,-2,1,1,0))

A.svd<-svd(A) #Creates a structure holding info

U<-A.svd$u

D<-A.svd$d #Note that R uses UDV^T instead of USV^T

V<-A.svd$v

Temp<-D[1] * U[,1] %*% t(V[,1]) + D[2]* U[,2] %*% t(V[,2])

norm(A-Temp)

Temp2<-U[,1:2] %*% diag(D[1:2]) %*% t(V[,1:2])

norm(A-Temp2)

Next, we’ll be looking at two applications- One in image processing, and one in computing a generalized
inverse.

4.8 Generalized Inverses

Let a matrix A be m×n with rank k. In this general case, A does not have an inverse (A is not even square).
Is there a way of restricting the domain and range of the mapping y = Ax so that the restricted map is
invertible? And if so, how do we compute that inverse?
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We’ll find that the “inverse function” will be called the Moore-Penrose Pseudo-Inverse, and is
relatively easy to compute using the SVD of matrix A. Indeed, let’s consider the matrix equation:

Ax = b

Replacing A by the reduced SVD (reduced to m× k, k × k, n× k matrices), we have:

UΣV Tx = b

Since U is m× k with orthonormal columns, UTU is the k × k identity, so we multiply both sides by UT :

UTUΣV Tx = UT b ⇒ ΣV T = UT b

The matrix Σ is k × k with singular values along the diagonal. Because the rank is k, we have k non-
zero singular values, so Σ is invertible. In the exercises, we’ll show that the inverse is found by taking the
reciprocal of each diagonal element- We’ll see how that’s computed in the programming section. Multiply
both sides by the inverse:

Σ−1ΣV Tx = Σ−1UT b ⇒ V T c = Σ−1UTx

Finally, multiply both sides by V . Remember, V V T 6= I, however, V V Tx is the projection of x into the
rowspace of A. We’ll call that x̃.

x̃ = V Σ−1UT b

This matrix product is the pseudo-inverse, denoted by dagger notation

A† = V Σ−1UT

You might recall that A is m × n, and the pseudo-inverse A† is n × m. Just to be clear, this “inverse”
will take a general b ∈ IRm and map it back to an x in the rowspace of A. If you check, A will map x to
the the projection of b to the columnspace of A (unless it is in the columnspace already). That’s what we
mean when we say that this mapping has been restricted to be between the k−dimensional rowspace and
columnspace. Restricted to these two subspaces, the mapping x→ Ax is 1-1 and onto, and invertible!

Finding the rank of A

What we haven’t discussed yet is the determination of the rank k. Theoretically, the value of k is the number
of non-zero singular values (or non-zero eigenvalues of AAT or ATA).

The problem is one that is not theoretical, but computational. We need to determine if a number is zero,
or if it is not- Seems simple, but we seldom see exactly zero in our computations- In the computations, what
typically happens is that the singular values approach zero, and then we need to decide on a cut-off: how
close to zero is zero?

The cut-off is typically arbitrary and problem-dependent. For example, if there is a clear drop between
numbers (like σ2 = 8 and σ3 = 0.01), then we might go ahead and take the rank to be 2.

Often we look at the eigenvalues of AAT or ATA rather than the singular values- The reason is that later
we’ll see that the eigenvalues actually represent some statistical properties of the data (related to variance).
In order to be consistent, rather than looking at the eigenvalues themselves, we’ll look at the normalized
eigenvalues:

λ1∑
i λi

,
λ2∑
i λi

, . . . ,
λn∑
i λi

These sum to 1, like probabilities. One idea is to take the rank k to be that scaled eigenvalue such that the
sum of the first k values is at least, say, 0.99.

There are other ways as well. In fact, for large matrices, Gavish and Donoho1 published some work on
finding the optimal rank.

1Gavish and Donoho, “The Optimal Hard Threshold for Singular Values is 4/
√

3”, IEEE Transactions on Information
Theory, v 60, Issue 8, 2014, pg 5040 - 5053
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Programming Examples in Matlab, Python and R

The problem we’ll be solving on the computer is to find the solution to the following matrix equation by
explicitly computing the pseudo-inverse.

1 2 3
4 5 6
7 8 9

10 11 12

x =


4
−1

2
1


In the code below, we will first construct the SVD of A, and then inspect the diagonal values of S to
determine the rank (in this case, the rank is 2). We then compute the pseudo-inverse, Ap, and find the (least
squares) solution to the equation above.

Finally, we verify our theory by comparing Ax and the projection of b into the columnspace of A (they
should be the same). Similarly, we compare our solution x with the projection of x into the rowspace (the
projection of the projection does not change, so these should be the same vector).

We should note that each of these languages has the pseudo-inverse built in (probably pinv), but before
we use it, we want to be sure we understand how it is constructed- The (possibly) non-trivial part of the
construction is the determination of the rank of A.

• Matlab:

A=[1 2 3;4 5 6;7 8 9;10 11 12];

b=[4;-1;2;1];

[U,S,V]=svd(A);

S

Ap=V(:,1:2)*diag(1./diag(S(1:2,1:2)))*U(:,1:2)’; %Pseudo-inverse

xsoln=Ap*b %The "solution" to our system.

A*xsoln %This is what Ax actually is.

U(:,1:2)*U(:,1:2)’*b %See if Ax is the proj of b into

% col(A).

V(:,1:2)*V(:,1:2)’*xsoln %See if x is the same as proj of x

% into row(A).

• Python:

import numpy as np

A=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])

b=np.array([[4],[-1],[2],[1]])

U,S,VT=np.linalg.svd(A,full_matrices=0)

print(S) # In Python, S is not a diagonal matrix

Ap= VT[0:2,:].T @ np.diag(1/S[0:2]) @ U[:,0:2].T

xsoln=Ap @ b

print(A @ xsoln) #This vector and the next should be the same.

print(U[:,0:2] @ U[:,0:2].T @ b)

print(xsoln) #This vector and the next should be the same.

print(VT[0:2,:].T @ VT[0:2,:] @ xsoln)

• R:

A<-cbind(c(1,4,7,10),c(2,5,8,11),c(3,6,9,12))
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b=cbind(c(4,-1,2,1))

A.svd<-svd(A) #Creates a structure holding info

U<-A.svd$u

S<-A.svd$d #Note that R uses UDV^T instead of USV^T

V<-A.svd$v

Ap=V[,1:2] %*% diag(1/S[1:2]) %*% t(U[,1:2])

xsoln=Ap %*% b

A%*%xsoln #This vector and the next should be equal

U[,1:2] %*% t(U[,1:2]) %*% b

V[,1:2] %*% t(V[,1:2]) %*% xsoln #This vector and the next should be equal

xsoln

4.9 Exercises

Before working through the exercises, be sure you’ve tried out the SVD and pseudo-inverse code examples
so you have the template files ready for the homework.

1. In each of the programming languages, we built Σ−1 by replacing each diagonal element with its
reciprocal. Because we had rank 2, we only used the first two elements.

What happens if you forget that, and compute (in each language, respectively):

Matlab: U*diag(1./diag(S))*V’ Python: VT.T @ np.diag(1/S) @ U.T

In R: V%*% diag(1/S)%*% t(U)

Compare these to your previous pseudo-inverse. Notice anything? What happened?

2. Some sources say that, if A is full rank (let’s assume that m > n with rank n), then the pseudo-inverse
can be computed as the following. We want to verify this using the SVD.

A† = (ATA)−1AT

Hint: Start with A = UΣV T , and note that Σ−1Σ−1 = Σ−2, and Σ−2Σ = Σ−1, since Σ is a diagonal
matrix.

3. Let A be m× n with rank k, so that A† = UΣ−1V T is from the rank k SVD of A.

(a) Show that the pseudo-inverse of the pseudo-inverse is the matrix A: (A†)† = A

(b) Simplify the expression AA† using the SVD.

(c) Simplify the expression A†A using the SVD.

(d) Given Ax = b, solve for x by first multiplying both sides by A†, and use your previous simplifi-
cation to simplify the equation.

4. Consider [
2 1 −1
3 1 2

] x1

x2

x3

 =

[
5
1

]
(a) Before solving this problem, what are the dimensions of the four fundamental subspaces?

(b) Use Matlab, Python or R to compute the SVD of the matrix A, and solve the problem by
computing the pseudoinverse of A explicitly.
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(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace, similar
to the example.

5. Consider 
2 1 −1 3
−1 0 1 −2

7 2 −5 12
−3 −2 0 −4

4 1 −3 7



x1

x2

x3

x4

 =


5
1
0
−2

6


(a) Find the dimensions of the four fundamental subspaces by using the SVD of A (in Matlab, Python

or R).

(b) Solve the problem.

(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace.
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Part I

Data Representations
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Chapter 5

The Best Basis

5.1 Introduction

The problem we want to consider is this: We’re given p points in IRn. Find the “best” k−dimensional basis
for the data.

There are a couple of things that will make our job easier:

• We will assume that the data has been mean-subtracted, so that the mean is zero (in IRn).

• The basis is orthonormal (each basis vector is in IRn).

• To find the “best” basis will require an error function. We will then minimize it.

At the end of this section, you’ll see that the best k−dimensional basis for your data (regardless of k)
is given by the first k eigenvectors of the covariance matrix, which are typically computed using the
Singular Value Decomposition (SVD).

5.1.1 The Covariance Matrix, Revisited

Suppose we have p data points in IRn, {x1,x2, . . . ,xp}, and they are organized column-wise in an n × p
matrix X.

As we recall, the n × n covariance matrix for data in IRn measures the covariance between the data in
coordinate i and the data in coordinate j. Using the n × p matrix X, then define x̄ ∈ IRn as the mean,
then the (i, j)th entry of the covariance matrix is given by the following, where we’re taking the covariance
between the ith and jth row of X.

Cij =
1

p− 1

p∑
k=1

(xik − x̄i)(xjk − x̄j)

We will typically assume the mean is zero, so be sure and mean-subtract your data matrix before finding a
basis for your data! With zero mean,

Cij =
1

p− 1

p∑
k=1

xikxjk

If we think of this computation in terms of the matrix X as in the figure below, we see that Cij can be
computed using a dot product between row i of X and column j of XT :
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Therefore, we see that the n× n matrix C can be computed one of two equivalent ways:

C =
1

p− 1
XXT or C =

1

p− 1

n∑
k=1

xkx
T
k

Finally, we recognize that the covariance matrix is symmetric, so the Spectral Theorem applies. In
particular, there is an orthonormal matrix P and a diagonal matrix D so that

C = PDPT

where the columns of P form the eigenvectors associated with the diagonal elements of D (which are typically
written largest to smallest).

To connect this to the SVD of the data matrix X, if X is n× p (so that data is stored column-wise), and
we write the reduced SVD as:

X = UΣV T

Then

C =
1

p− 1
XXT =

1

p− 1
UΣV TV ΣTUT = U

(
1

p− 1
Σ2

)
UT

We see a relationship between the singular values of X, σi, and the eigenvalues of the covariance matrix, λ̂i:

1

p− 1
σ2
i = λ̂i

So far, we have defined a data matrix X, and we’ve looked at its covariance matrix C, and we’ve discovered
that the eigenvectors of the covariance matrix are the left singular vectors of the data matrix (when the data
is written column-wise and has been mean subtracted).

We’ll be getting back to the best basis in a moment, but first we want to make a few more observations.

Projections and the Mean

Suppose you have your p data points in IRn that have not been mean subtracted, and you have a vector u
onto which we want to project the data.

First, if we project one point x onto our (unit) vector u, then the projection is (xTu)u, and the scalar
projection is the number (xTu). Similarly, projecting all the data gives us p real numbers (the scalar
projections): {

uTx1,u
Tx2, . . . ,u

Txp
}

so the mean of the projected data is given by

1

p

(
uTx1 + uTx2 + . . .+ uTxp

)
= uT

(x1 + x2 + . . .+ xp)

p
= uT x̄

Therefore, the mean of the projection is the projection of the mean. In particular, if the mean of a
data set is zero, and the data is projected to a vector (or subspace), then the new mean is also zero.
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Projections and the Variance

In the last section, we saw how the mean and the projection interacted. In this section, let’s see how the
variance is affected. We’ll keep our previous general data set, p points in IRn, and we’ll suppose that the
data has zero mean in IRn. By what we showed, the scalar projections would also have zero mean.

If we project the p vectors onto an arbitrary unit vector u, and consider the scalar projections, then
the resulting variance (in the direction of u will be:

S2
u =

1

p− 1

p∑
k=1

(uTxk)2 =
1

p− 1

p∑
k=1

uTxkx
T
k u = uT

(
1

p− 1

p∑
k=1

xkxk
T

)
u = uTCu

This is actually a very key quantity, and will come up in the next section. We will look at this quantity
more closely in a bit, but let’s look at what happens in one special case: Suppose that u is an eigenvector
of the covariance C corresponding to the first eigenvalue, λ̂1 using our previous notation. Then:

uTCu = uT λ̂1u = λ̂1

Therefore, if we project all the data to the first eigenvector of C, the new variance will be the first eigenvalue
of C.

Reconstruction Error and the Basis

Given a specific vector x ∈ IRn and an arbitrary orthonormal basis, φ1,φ2, . . . ,φn, we can write

x = (φT1 x)φ1 + (φT2 x)φ2 + . . .+ (φTnx)φn

so that the magnitude of x can be written as:

‖x‖2 = (φT1 x)2 + (φT2 x)2 + . . .+ (φTnx)2.

We can use the same algebraic manipulation that we used in the last section to rewrite this as:

‖x‖2 = φT1 xx
Tφ1 + φT2 xx

Tφ2 + . . .+ φTnxx
Tφn.

We can break this up and define the error using one vector φ1:

‖x‖2 = φT1 xx
Tφ1 + ‖xerr‖2

Now do this for all p data points. For any single vector φ1, we sum these together:

‖x1‖2 = φT1 x1x
T
1 φ1 + ‖x(1)

err‖2

+‖x2‖2 = φT1 x2x2
Tφ1 + ‖x(2)

err‖2

...

‖xp‖2 = φT1 xpxp
Tφ1 + ‖x(p)

err‖2

p∑
k=1

‖xk‖2 = φT1

(
p∑
k=1

xkxk
T

)
φ1 +

p∑
k=1

‖x(k)
err‖2

We can multiply everything by 1/(p− 1) to make things work. That is,

1

p− 1

p∑
k=1

‖xk‖2 = φT1 Cφ1 +
1

p− 1

p∑
k=1

‖x(k)
err‖2. (5.1)
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In light of this equation, let us now define an error function using an arbitrary orthonormal basis, φ1, . . . ,φn.
The error we get when using a one dimensional representation of our data is given by

E(φ2, . . . ,φn) =
1

p− 1

p∑
n=1

‖x(n)
err ‖2.

Notice that the left side of Equation 5.1 is constant (it is the sum of the magnitudes of all the known data).
Therefore, minimizing the error function (the second term) is equivalent to maximizing the first term,
φT1 Cφ1.

Here now is our algorithm for find the “best” basis:

1. Find the unit vector φ1 so that φT1 Cφ1 is maximized.

2. We “project out” this vector so that the ith data point now becomes:

x(i) = x(i) − Projφ1
(x(i))

3. Re-compute C.

4. Repeat from Step 1 until we have enough basis vectors.

In practice, we will not need to do this- there is an easier way!

5.2 The Best Basis and the Eigenvectors

We have shown that finding the best basis reduces to maximizing the quantity:

max
φ6=0

φTCφ

φTφ

where we divide by the magnitude (squared) to enforce the fact that we want a unit vector, and we want to
stay away from the zero vector.

We know that the eigenvectors of the covariance matrix form an orthonormal basis for IRn, so we can
write any vector as a linear combination of them:

φ = c1v1 + c2v2 + · · ·+ cnvn = V c

Using the eigenvector-eigenvalue factorization C = V DV T , we can now write the numerator as:

φTCφ = (V c)T (V DV T )(V c) = cT (V TV )D(V TV )c = cTDc = c21λ1 + c22λ2 + · · ·+ c2nλn

Similarly, the denominator is:
φTφ = c21 + c22 + · · ·+ c2n

Let’s look at the coefficients of our expansion now. For λi, the coefficient in front is

ρi =
c2i

c21 + c22 + · · ·+ c2n

where ρi ≥ 0 and
∑n
i=1 ρi = 1 (like a probability distribution). Let’s summarize where we are. We now see

that maximizing φTCφ is equivalent to choosing ρ1, ρ2, · · · , ρn so that each ρi ≥ 0 and they sum to 1, to
maximize the quantity:

ρ1λ1 + ρ2λ2 + · · ·+ ρnλn
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It is easy to see that, if the λi ≥ 0 and are ordered from largest to smallest, then:

λn ≤ ρ1λ1 + ρ2λ2 + · · ·+ ρnλn ≤ λ1.

To maximize our given quantity, we set c1 = 1 and the rest of the coefficients to zero. This leads us to our

main conclusion. The vector φ that maximizes the quantity maxφ6=0
φTCφ
φTφ

is given by v1, the eigenvector

corresponding to the largest eigenvalue of C. This is summarized by the theorem below:

The Best Basis Theorem

Given p points in IRn, the best k−dimensional basis is found by taking the first k eigenvectors of the covariance
matrix C. Equivalently, given the data in an n × p matrix X, the best k−dimensional basis is found by
taking the first k columns of the U , the left singular vectors of the SVD of X. Further, this is the “best”
basis for k = 1, 2, . . . , r, where r is the rank of X.

Speaking of Rank...

We discussed this briefly in an earlier section, but it is worth thinking about again.
It is useful to look at the rank as that number of basis vectors required to preserve some percentage of

the variance in the data. From our previous section on the covariance matrix, we had a relationship between
the eigenvalues of the covariance matrix, λ̂i and the singular values of X:

1

p− 1
σ2
i = λ̂i

so normalizing the set of eigenvalues is equivalent to doing it to the squared singular values:

λi =
λ̂i∑n
j=1 λ̂j

=

1
p−1σ

2
i∑n

j=1
1
p−1σ

2
j

=
σ2
i∑n

j=1 σ
2
j

Now the λi are positive and sum to 1. The idea is to keep enough dimensions r so that

r∑
i=1

λi ≥ τ but

r−1∑
i=1

λi < τ.

In this case, we would say that it takes r dimensions to explain or encapsulate τ percent of the variance in
the data.

What should τ be? This is problem dependent. In some very noisy problems, you may only want to keep
τ ≈ 0.6, while with very little noise, you might take τ ≈ 0.99.

5.2.1 The Dimensionality Reduction Step

Once we have our k basis vectors, what do we do with them? First, we create our low dimensional represen-
tation of the data. Initially, the data represents p points in IRn, and we want to reduce that to p points in
IRk- These are the coordinates of each point using our k−dimensional basis. That is, if UΣV T is the svd of
X (mean subtracted), then the k dimensional data is created by the following, where U is n× k, X is n× p,
and the low-dimensional representation Xcoords is k × p.

Xcoords = UTX

Especially if k = 2 or k = 3, we can then plot the low dimensional points in the plane or in 3-d. The
“reconstruction” of the data is the representation back in IRn using the k basis vectors.

Xrecon = UXcoords = UUTX

Remember that earlier we said that UTU = I, but UUT is the projection matrix taking data in IRn and
projecting it into the column space of U (so X 6= UUTX unless the columns of X are already contained
within the column space of U).
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5.3 Connecting to Principal Components Analysis (PCA)

In PCA, the principal components are defined to be a sequence of k direction vectors, where the ith vector
is the direction of a line that best fits the data while being orthogonal to the first i− 1 vectors1.

You can see that the principal components of set of data are then equivalent to the k basis vectors we’ve
constructed (the first k eigenvectors of the covariance matrix). While PCA and the best basis are the same,
you will typically hear the language of statistics used in PCA, while we use the language of linear algebra in
constructing the best basis.

5.4 Exercises

Before doing the computer problems below, you should write down (using linear algebra notation) what
computations you want to make. If you have questions (especially with the coding), I’m happy to help.

1. Suppose we have p data points in IRn. Show that the variance of the data, projected to a standard
basis vector ei, returns the usual variance for the data in that dimension. (I want you to look back at
the computations we made for this in the text, “Projections and the Variance”).

2. Suppose we have two o.n. vectors u,v ∈ IRn. Given our p points in IRn, compute the covariance
between the data projected to u and the data projected to v, and (i) show that the result is

uTCv

(ii) In the special case that u,v are eigenvectors of the covariance matrix, how does this quantity
simplify?

3. Suppose we have 4 points in IR3 as organized in the matrix X (left and below), and let φ1 =
(1/
√

3)[1, 1, 1]T . Use a computer (Octave/Matlab, Python or R) to compute the three quantities
given in the formula to the right and below. In your script, be sure you’re actually computing the
covariance matrix and each quantity separately.

X =

 1 2 −1 3
0 0 1 1
−1 1 2 1

 , 1

p− 1

p∑
k=1

‖xk‖2 = φT1 Cφ1 +
1

p− 1

p∑
k=1

‖x(k)
err‖2.

4. Using the data (and vector φ1) in the previous exercise, compuationally verify our statements: The
projection of the mean is the mean of the projection, and the variance of the data projected to φ1 is
φT1 Cφ1.

5. Verify numerically that the variance of the projected data to the first best basis vector (first one) is
given by the first eigenvalue of the covariance matrix. (Careful- if you use the eig command, the
eigenvalues are not ordered).

6. Continuing with the data from Problem 3, if we retained two of the basis vectors, how much variance
(as a percentage) is “explained” by them? (This refers to the discussion in the text about how to
compute the rank).

7. Load the clown data, we obtain a matrix X that is 200× 320. Treat this as 320 vectors in IR200.

(a) Double center the data in X (call the result Xm).

(b) Find the best two dimensional basis for the vectors in Xm, then project the data to two dimensions
and plot the result.

(Question to think about, you don’t need to answer: Did you expect a pattern or not?)

(c) Reconstruct the data back in IR200, and show the result as an image (don’t add the means back
in).

1Wikipedia, pulled March 2021
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5.5 A Summary

Before we continue, let’s summarize the process for PCA (or best basis), and let’s discuss what you can get
out of the PCA. First, the process- It’s short.

Principal Components Analysis

Let X store p points, each in IRn so X is n× p. To find the best basis (in IRn):

1. Compute the mean so that x̄ ∈ IRn.

2. Mean subtract the data, put in the n× p matrix Xm.

3. For the resulting data, take the SVD:

Xm = UΣV T

4. The best basis (or principal components) are the first k columns of U .

Once this is done, what can we do with it? Here is a list of common tasks.

• Visualize the mean and eigenvectors.

The eigenvectors of the covariance matrix (the columns of U) typically carry very interesting information-
What do they look like? In the application below, the eigenvectors can be visualized as photos, but
you can also simply plot an eigenvector if that has meaning (plot the vector index along the horizontal
axis, and the vector values along the vertical axis. In Matlab, if v is a vector, this would be plot(v).

• Determine the rank.

We talked about this earlier- The rank of a matrix is critical to know if you’ll be constructing the
pseudo-inverse, or if you simply want to reduce the dimensionality of the data (see the next item). One
way to determine the rank is to look for large breaks in the plot of the singular values (the diagonal
elements of Σ). A second way is to construct the eigenvalues of the covariance matrix, and retain
enough dimensions so that the resulting space encapsulates a certain percentage of the variance.

• Reduce the dimensionality of the data.

This is the primary goal of most applications of PCA. If Xm is n × p (p points in IRn, with mean
subtracted), then the following is the k × p, or k−dimensional, representation of the p points- matrix
L (for low dimensional) is k × p:

L = U(:, 1 : k)TXm

The Matlab-esque notation means to take all rows, but only the first k columns of U .

• Visualize the data that has been reduced in dimension.

It’s often a good idea to plot the first rows of L in IR2 just to be sure it gives you what you expect. There
might be even more interesting information using other basis vectors down further in the decomposition
(corresponding to lower rows of L)- We’ll actually see an example below.

• Project new data using the new basis.

If D is m×n (m points in IRn), and Dm is the matrix with the mean of X subtracted from the columns,
then the projected data in matrix P is also m× n and is given by:

P = U(:, 1 : k)U(:, 1 : k)TDm

You can then compare P to Dm (or add the mean back to both matrices) to see if the new data is well
represented by the basis.
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Before we leave this discussion for an application, have you considered what the matrix V (from the
SVD of X) represents? It represents a scaled version of the coordinates (or low dimensional representation).
How? If Xm = UΣV T is the reduced SVD, then

L = UTXm = UT (UΣV T ) = ΣV T

And remember that Σ is just a diagonal matrix (k × k) and V is p × k. Multiplying by the diagonal just
scales each column of V , so V is a scaled version of the k−dimensional representation of the data!

5.6 Application: Eigenfaces

Consider the set of all photos of some fixed width and length (say a× b) and these are photos of faces. To
be even more specific, let’s set the coordinates of the eyes to be the same in all photos.

As you might imagine, the dimension of this “face space” should be quite large, since we’re representing
all possible faces here. However, should it fill up IRab? If you were to take an arbitary vector in IRab and
visualize it as an a × b photo, what would you see? The image would probably be just noise- the set of
“faces” is then (hopefully) only a “small” dimensional subspace of IRab, and that gives us some reason to
expect that we can find a smallish number of template faces so that every face is a linear combination of the
templates.

What are these template faces? They are basis vectors in IRab, meaning that each basis vector can be
visualized as an a× b image. We know that these basis vectors are the eigenvectors of the covariance matrix
of the photo data, so we’ll call them eigenfaces.

In out next example, we’ll explore face space a bit and see some interesting things.

5.6.1 Project Example: The Yale Database

The data we’ll look at is a portion of the Extended Yale Database below linked below if you want to have a
look (good as of March 2021):

Extended Yale Database

Further, this little project is adapted from Brunton and Kutz’ text on “Data Driven Science and Engi-
neering”, which is at databookuw.com. The had a very cute example!

As a side note, it’s important to distinguish between an m× n matrix (which as m rows and n columns)
versus an m × n image, which has a width of m pixels and a height of n pixels (not my fault!). The
images below are said to be 168× 192, but are typically stored in a 192× 168 matrix (for future reference,
168× 192 = 32256).

Discussion of the Data

We’ll begin with a discussion of the dataset allFaces2.mat, which will be available from our class website.
Here is a discussion of the datasets you’ll see stored in this file.

• faces is 32256× 2410 matrix, representing 2410 photos, each of which is 192× 168 (as a matrix).

• Constants n = 192 and m = 168.

• nfaces is a vector with 38 elements, each representing one of the persons posing for photos. The datain
faces is stored in order with all the poses for the first person first, then the second person, and so on.
The vector nfaces stores the number of poses each person has. For example, the first person has 64
poses, so nfaces(1) is 64.

• Dog is an image of the same size as the photos of the people, but is the grayscale photo of a dog.
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Figure 5.1: The first 36 of the 38 persons in the file are shown to the left. To the right, we show a sample
of 36 poses for the first person (out of 64 included in the data file). Each photo is 168× 192 (as an image).

Visualizing a Sample of Data

In Figure 5.1, the first 36 of the 38 persons in the file are shown to the left. To the right, we show a sample
of 36 poses for the first person (out of 64 included in the data file).

Project Outline

We’re going to find the best basis for our face data. Since we have so many photos, we’re going to try
“training” the PCA on just the photos from the first 36 people, leaving the last two people out to see how
well we have captured “face space”. Continuing, here’s what we’ll do on the computer:

1. Load the data. The “training” data will be the first 2282 columns.

2. Find the mean, then mean-subtract the data. Visualize the mean.

3. Find the SVD.

4. Look at the singular values to see if there is any clear break.

5. Look at some sample eigenfaces (columns of U).

6. Project persons 2 and 7 into the plane spanned by the 5th and 6th basis vector, and plot the result.

7. Look at reconstructions of person 37 using dimension: 50, 150, 500, 1000.

8. Look at whether or not we can reconstruct the dog’s face using a basis from people!

Project Implementation: Matlab/Octave

Side Remark: This data will most likely be too large to run on Octave-online. However, if you have Octave
set up on your home PC, it should work. For the homework, we’ll be using a smaller data set.
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%% Eigenface Example using Yale Database

%%Step 1: Load the data and create the training subset using 36 people.

% The total number of columns needed is: sum(nfaces(1:36))

load allFaces2.mat

trainingFaces=faces(:,1:sum(nfaces(1:36)));

%% Step 2: Find the mean, mean-subtract the data. Visualize the mean

% as a photo!

avgFace=mean(trainingFaces,2);

Xm=trainingFaces-avgFace;

figure(1)

imagesc(reshape(avgFace,n,m));

colormap(gray); axis off; axis square

%% Step 3: Compute the SVD.

[U,S,V]=svd(Xm,’econ’);

%% Step 4: Look at the singular values; usually a log plot for high dimensions.

plot(log(diag(S))); % At approx 2262, we see a big drop- this is the rank.

%% Step 5: Let’s look at some eigenfaces! Here are the first four:

figure(2)

for j=1:4

subplot(2,2,j)

imagesc(reshape(U(:,j),n,m));

colormap(gray); axis off; axis square;

end

%% Step 6: Project the poses from persons 2 and 7 into the plane spanned by

% basis vectors 5 and 6. Don’t worry about the formulas used to determine

% the columns. They’re included here in case you want to change 2 and 7

% to other people.

P1=2; P2=7; Bas1=5; Bas2=6;

P1cols=sum(nfaces(1:P1-1))+1:sum(nfaces(1:P1));

P2cols=sum(nfaces(1:P2-1))+1:sum(nfaces(1:P2));

Data=faces(:,[P1cols,P2cols]) - avgFace;

Coords=U(:,[Bas1,Bas2])’*Data; % This is two dimensional data

figure(3)

plot(Coords(1,1:nfaces(P1)),Coords(2,1:nfaces(P1)),’ro’);

hold on

plot(Coords(1,nfaces(P1)+1:end),Coords(2,nfaces(P1)+1:end),’k^’);

hold off

%% Step 6A: Optional subplot with the two faces and positive/negative

% 5th basis vector.
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subplot(2,2,1)

imagesc(reshape(faces(:,65),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,2)

imagesc(reshape(U(:,5),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,3)

imagesc(reshape(faces(:,381),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,4)

imagesc(reshape(-U(:,5),n,m));

colormap(gray); axis off; axis square;

%% Step 7: Look at partial reconstructions of person 37 using rank 50, 150, 500, 1000

Data=faces(:,sum(nfaces(1:36))+1);

Data=Data-avgFace;

kdim=[50,150,500,1000];

figure(4)

for j=1:4

subplot(2,2,j)

Recon=U(:,1:kdim(j))*(U(:,1:kdim(j))’*Data);

imagesc(reshape(Recon+avgFace,n,m));

colormap(gray); axis off; axis square

end

%% Step 8: Repeat, for the photo of a dog!

Data=Dog;

Data=Data-avgFace;

kdim=[50,100,400,600,1600];

figure(5)

subplot(2,3,1)

imagesc(reshape(Dog,n,m));

colormap(gray); axis off; axis equal

for j=1:5

subplot(2,3,j+1)

Recon=U(:,1:kdim(j))*(U(:,1:kdim(j))’*Data);

imagesc(reshape(Recon+avgFace,n,m));

colormap(gray); axis off; axis equal

end

Project Implementation: Python

import matplotlib.pyplot as plt

import numpy as np

import scipy.io

# Step 0: set some parameters, load the original Matlab data

plt.rcParams[’figure.figsize’] = [8, 8]

plt.rcParams.update({’font.size’: 18})
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mat_contents = scipy.io.loadmat(’allFaces2.mat’)

faces = mat_contents[’faces’]

m = int(mat_contents[’m’])

n = int(mat_contents[’n’])

Dog = mat_contents[’Dog’]

nfaces = np.ndarray.flatten(mat_contents[’nfaces’])

#%%

# Step 1: Load the data

trainingFaces = faces[:,:np.sum(nfaces[:36])]

#%%

# Step 2: Find the mean, visualize it.

avgFace = np.mean(trainingFaces,axis=1) # size n*m by 1

Xm=trainingFaces-avgFace[:,np.newaxis];

plt.figure()

plt.imshow(np.reshape(avgFace,(m,n)).T)

plt.set_cmap(’gray’)

plt.title(’Mean Face’)

plt.axis(’off’)

plt.show()

#%%

# Step 3: Compute the SVD

U, S, VT = np.linalg.svd(Xm,full_matrices=0)

#%%

# Step 4: Plot the singular values.

plt.figure()

plt.plot(np.log(S))

#%%

# Step 5: Let’s look at some eigenfaces (first 4, pos and neg)

fig,axs = plt.subplots(2,2)

axs=axs.ravel()

for i in range(4):

axs[i].imshow(np.reshape(U[:,i],(m,n)).T)

fig,axs = plt.subplots(2,2)

axs=axs.ravel()

for i in range(4):

axs[i].imshow(np.reshape(-U[:,i],(m,n)).T)

axs[i].set_title(str(i))

#%%

## Step 6: Project person 2 and 7 onto basis vecs 5 and 6

P1 = 2 # Person number 2
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P2 = 7 # Person number 7

P1data = faces[:,np.sum(nfaces[:(P1-1)]):np.sum(nfaces[:P1])]

P2data = faces[:,np.sum(nfaces[:(P2-1)]):np.sum(nfaces[:P2])]

P1data = P1data - avgFace[:,np.newaxis]

P2data = P2data - avgFace[:,np.newaxis]

# Project onto PCA modes 5 and 6

PCACoordsP1 = U[:,4:6].T @ P1data

PCACoordsP2 = U[:,4:6].T @ P2data

plt.figure()

plt.plot(PCACoordsP1[0,:],PCACoordsP1[1,:],’d’,color=’k’,label=’Person 2’)

plt.plot(PCACoordsP2[0,:],PCACoordsP2[1,:],’^’,color=’r’,label=’Person 7’)

plt.legend()

plt.show()

# %%

## Step 7: Show eigenface reconstruction of image that was omitted from test set

plt.figure()

testFace = faces[:,np.sum(nfaces[:36])] # First face of person 37

plt.imshow(np.reshape(testFace,(m,n)).T)

plt.set_cmap(’gray’)

plt.title(’Original Image’)

plt.axis(’off’)

plt.show()

#%% Step 8: Reconstruct a dog from photos of people!

#

# Vector "Dog" needs to be reshaped for some reason...

Dog=np.reshape(Dog,(32256,))

testFace = Dog - avgFace

k_list = [50, 200, 500, 1000, 1600]

plt.figure()

fig,axs = plt.subplots(2,3)

axs=axs.ravel()

axs[0].imshow(np.reshape(Dog,(m,n)).T)

axs[0].axis(’off’)

for i in range(5):

reconFace = avgFace + U[:,:k_list[i]] @ ( U[:,:k_list[i]].T @ testFace)

axs[i+1].imshow(np.reshape(reconFace,(m,n)).T)

axs[i+1].axis(’off’)
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Project: Eigenfaces

Description of the data: Math350Homework.mat

• Matrix X that is 24138 26 (26 photos, each with 162 rows and 149 columns)

• Constants m = 162 and n = 149.

If you want to visualize the photos, you would reshape the corresponding column vector. For example, to
visualize the first four faces and put them together in one figure, we would type:

for jj=1:4

subplot(2,2,jj)

imagesc(reshape(X(:,jj),m,n));

axis off; axis equal; colormap(gray)

end

Our project is to use the provided code and previous example to do some analysis of this data set.

1. Compute the mean vector and represent it as a face (by plotting it).

2. Compute the first four eigenfaces (and represent them as faces). Put them together in one plot. In a
second plot, show what the “photographic negatives” of the eigenfaces look like.

3. What might be a good approximation to the rank of the matrix X (if our goal is to make the faces
recognizable, about 74% of the variance).

4. Plot the reconstruction of a randomly selected face using rank 2, 5, 10 and 15. Plot these (as photos)
together in one figure.

5. Plot the data using the best two dimensional representation using a new figure. Plot the first 13 data
points as asterisks and the remaining 13 as triangles.
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Chapter 6

A Best Nonorthogonal Basis

In this section, we examine a particular question whose solution will involve getting an optimal nonorthogonal
basis, which is quite contrary to our earlier chapters- in fact, the reader should ask why we would ever want
to use a non-orthogonal basis when it would be quite easy (using Gram-Schmidt) to construct an orthogonal
version of the same basis.

To answer this question, consider the synthetic data example in Figure 6.1. Here there is a definite
“natural” basis appearing in the data- and the basis vectors are not orthogonal. While the data was synthetic,
we do get similar types of data appearing in the problem of Blind Signal Separation. Consider the following
tasks:

1. We have a patient that is pregnant. Our overall goal is to listen to the fetus heartbeat, but when we
try, the sound of the mother’s heartbeat is mixed with the heartbeat of the fetus. Symmetrically, if
we were to try to listen to the heartbeat of the mother, we would also hear the heartbeat of the fetus.
Is it possible to gather these sounds on microphones and manipulate the data so that the mother’s (or
fetus) heartbeat has been isolated?

2. We have two microphones placed at random, but distinct, places in a room. We also have two people
speaking in the room (the placement of the people is distinct from the placement of the microphones-
we do not assume that each microphone is placed in front of each speaker). Is it possible to manipulate
the two mixtures of voices so that we can isolate each speaker’s voice?

The answer lies in a fairly new technique called Independent Component Analysis (ICA) (versus what we
studied earlier, principal components analysis, or PCA). In ICA, we assume that we have some underlying,
statistically independent, processes and that we are observing mixtures of these processes. Our goal is to
separate the mixtures.

This problem is also known as Blind Signal Separation, where we assume some unknown mixture of
signals, and we attempt at separating them.

This process (the problem and the solution) can also be framed in other terms- we will focus on the
geometric meaning of the problem, and will solve it using the techniques of linear algebra.

6.1 Set up the Signal Separation Problem

We will assume that there exists a “clean” separation of our observed mixture of two signals (we will be
explicit in what we mean by that momentarily, and we will discuss the more general case in a moment).
These signals, as time series, are two columns of a matrix S, so that S ∈ IRp×2, where p is the length of the
sample.

We will further assume that the mixtures we are observing are linear mixtures, so that the mixtures we
observe may be modeled as:

x1 = α1s1 + α2s2
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Figure 6.1: A synthetic data example of a naturally emerging set of basis vectors from data- These are not
orthogonal.

x2 = α3s1 + α4s2

so that x1 is the observed mixture in microphone 1, and x2 is the observed mixture in microphone 2. In
linear algebra terms, we can state the problem as follows:

Given x1, x2 as columns of X ∈ IRp×2, solve the following equation for A ∈ IR2×2 and S ∈ IRp×2:

X = SA

We assume that the rows of X have been mean-subtracted.
If you look at this equation, something should be occurring to you- this is not a well defined problem!

There are an infinite number of solutions for A,S. In fact, one solution would be to let A be the 2 × 2
identity matrix, and S = X.

We could also give a solution in terms of the SVD ofX, which is what we would do in Principal Component
Analysis:

X = UxΣxV
T
x

so that S = Ux, and A = ΣxV
T
x . In this case the data is “separated” in the sense that the columns of Ux

are orthogonal (or uncorrelated). Figure 6.2 shows the result of this operation on our synthetic data. It also
shows that the desired basis vectors are still rotated.

This process, while not the desired one, is a good first step, but somehow we need the signals to be
independent, and not just uncorrelated.

Alternatively, let us consider the SVD of the unknown mixing matrix A, A = UmΣmV
T
m . The problem

will be solved if we knew this matrix, as S could be computed by using the inverse of A (we assume that
A is full rank- see the exercises for a discussion). Let’s try some sample computations now by taking our
original equation and substituting the SVD of A:

X = SA⇒ X = SUmΣmV
T
m

Now compute the 2× 2 covariance of X:

XTX = VmΣmU
T
mS

TSUmΣmV
T
m

Now, if the rows of S are statistically independent, then they certainly should be uncorrelated. We will
assume therefore that SST is some scalar multiple of the identity:

SST = cI2×2
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Figure 6.2: The synthetic data set after the SVD transformation as described in the text. In this case, the
principal components analysis has left the desired basis vectors in a rotated position. We require one more
rotation (multiplication by an orthogonal matrix) to get the desirable results.

which also assumes that the variances of the signals are the same. In particular, we’ll assume that the signals
in S have been scaled so that STS = I. In the exercises, we will examine this assumption in more detail.

Using this, we see that:
XTX = VmΣ2

mV
T
m = VxΣxV

T
x

This tells us that Vm and Σm are recoverable from the SVD of X: If

X = UxΣxV
T
x

then
Σm = Σ1/2

x , Vm = Vx

If we were to stop here and take:

Y = XVxΣ−1/2
x = SUmΣmV

T
mVxΣ−1/2

x = SUm

we obtain the standard PCA solution. However, the signals are still rotated. We cannot perform another
covariance computation on Y , since now:

Y TY = UTmS
TSUm = I2×2

How can we compute Um? There is some justification for what we’re about to do- Let’s do it first and then
discuss it.

Define dA to be the difference matrix for the matrix A. That is, if A has been organized so that it
comprises p samples of k time series of data, then let A be p× k. We compute the difference as:

dA = A(2 : p, :)−A(1 : p− 1, :)

so that dA is now p− 1× k and
(dA)ij = Ai+1,j −Ai,j

If the data in A were the sample of some differentiable function, then dA is an approximation to the derivative
using ∆t = 1.

Note that the following matrix equation holds:

X = SA ⇒ dX = dS A
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so that
dXT dX = AT dST dS A

More particularly, let
Y = XVxΣ−1/2

x , or dY = dXVxΣ−1/2
x = dS Um

so that dY T dY = UTmdS
T dS Um. We now make our second assumption: While STS = I, we assume that

dST dS 6= I, but is diagonal. In this case, we can recover Um from the SVD of dY :

dY = UyΣyV
T
y

and Um = V Ty . Note that the singular vectors are transposed when making this computation!
This finishes our problem, since we have now computed the SVD of the mixing matrix A. The clean

signal is now found by taking:
S = Y Vy

We are approximating the mixing matrix by:

A ≈ V Ty Σ1/2
x Vx = UmΣmV

T
m

so that the approximate inverse is found via:

A−1 = VmΣ−1
m UTm = V Tx Σ−1/2

x Vy

This process of two SVDs, one on the matrix of data X, and another on the data dY can be brought
together as a single command. In fact, this process is equivalent to using the Generalized Singular Value
Decomposition, which will sometimes go under the name of Quotient Singular Value Decomposition (GSVD
or QSVD, respectively). This simplifies the coding so that you only have to use the following Matlab
commands. Let X be the p×k matrix of k mixtures of signals (this is transposed from our earlier notation).
Then signal separation is simply:

dX=diff(X);

[U,V,B,C,S]=gsvd(X,dX,0);

where the clean mixtures are in the columns of U .
We’ll try out both versions in the examples below, then in the next section we’ll define the GSVD.

Example
In this example, we will take three columns of data. The first two columns will comprise a circle and the

last will be white noise (that is, random data from a normal distribution). We will then multiply this by
3× 3 mixing matrix A, which was originally taken so that the elements are from a normal random variable
then subsequently hard coded for you to replicate. Denote the mixed data matrix as X, as we did previously.
Note that with column-wise data, the mixing matrix equations become:

X = SA⇒ X = SUΣV T

where we try to determine U,Σ, V .
Here is the script file to produce the signal separation:

%Script file to produce Example 1, ICA

numpts=400;

t=linspace(0,3*pi,numpts);

S=[cos(t’), sin(t’), randn(numpts,1)]; %Separated Signals

A =[ -0.0964 -0.1680 1.6777

0.4458 0.1795 1.9969

-0.2958 0.4211 0.6970]; %Mixing Matrix
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X=S*A;

dX=diff(X);

[U,V,B,C,S] = gsvd(X,dX,0); %Clean Signal in U

%The double SVD code, equivalent to the GSVD:

[Ux,Sx,Vx]=svd(X,0);

Y=X*Vx*diag(1./sqrt(diag(Sx))); %Stopping here is basic PCA

dY=diff(Y);

[Uy,Sy,Vy]=svd(dY,0);

S2=Y*Vy; %S2 is also the clean signal

%Plotting routines below:

figure(1)

for j=1:3

subplot(3,1,j)

plot(U(:,j)); %Clean Signals from GSVD

end

figure(2)

for j=1:3

subplot(3,1,j);

plot(S2(:,j)); %Clean Signals from double SVD

end

figure(3)

for j=1:3

subplot(3,1,j)

plot(Y(:,j)); %Results of PCA (or KL)

end

6.2 Signal Separation of Voice Data

In this example, we will linearly mix two voice signals, then separate them using the techniques we previously
described. This example is best done using a computer with a good sound card, but can be done without it.

Matlab comes with several sound files. For this example, we will use handel (a sample of the chorus to
Handel’s “Messiah”), and laughter (a sample of people laughing). The two files have different lengths, so
we’ll have to cut the longer file off so that they match.

Here is the Matlab code:

%Script for sound files

load handel

y1=y;

load laughter

S=[y y1(1:52634)]; %Clean samples in the columns of S

A =[ -0.5883 -0.1364; 2.1832 0.1139]; %Mixing Matrix

X=S*A;

mX=mean(X);

X=X-repmat(mX,52634,1);

figure(1)

plot(X(:,1),X(:,2),’.’);
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title(’Mixed Signals’);

%For comparison purposes, here’s the SVD

[Ux,Sx,Vx]=svd(X,0);

Y=X*Vx*(1./sqrt(diag(Sx)));

figure(2)

plot(Y(:,1),Y(:,2),’.’);

title(’KL Results’)

%Listen to the results: You’ll still hear mixtures

%soundsc(Y(:,1));

%soundsc(Y(:,2));

dX=diff(X);

[Y2,V,B,C,S3]=gsvd(X,dX,0);

figure(3)

plot(Y2(:,1),Y2(:,2),’.’);

title(’ICA Results’);

%Listen to the results: They will be clean!

%soundsc(Y2(:,1));

%soundsc(Y2(:,2));

More to Think About: There are a lot of experiments you can try with this data. Here are some things
you might try:

• Plot the signals as time series if you’ve never looked at voice data before. Also plot the differenced
signal. You might also look at the histograms of the two voice signals using hist. Do the signals look
like they are normally distributed or do they follow a Laplace distribution?

• Change the mixing matrix to a random matrix. Will you always get good results?

• Listen to the difference matrix dX. Does it still sound like the original? Listen to the second, third,
fourth difference. Why does the “derivative” of the signal sound just like the original (perhaps with a
different timbre quality, but recognizable just the same)?

• Check the assumptions on the clean signal S and the differenced signal dS- Are the assumptions met?

6.3 A Closer Look at the GSVD

Suppose that we have two matrices X ∈ IRm×n and Z ∈ IRp×n. The GSVD of matrices X,Z is a decompo-
sition where we determine Û , V̂ ,W,C, S so that:

X = ÛCWT Z = V̂ SWT

where Û , V̂ have orthonormal columns, C, S are diagonal matrices such that CTC + STS = I, and W is an
invertible matrix. In Matlab, the command is:

[Ux,Vz,W,C,S]=gsvd(X,Z)

The values of C, S and W satisfy the following generalized eigenvalue problem:

s2
iA

TAwi = c2iB
TBwi

The solution we use for the signal separation is now either:

X = ÛCWT = Û(CWT ) = SA or X = ÛCWT = (ÛC)WT = SA
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In the special case that si 6= 0, we’ll show that we can find xi using two regular SVD’s as we did in the
signal separation.

In this case, the eigenvector problem can be written as:

XTXwi = λZTZwi ⇒
(
XTX − λZTZ

)
wi = 0

If we let X = UΣxV
T
x be the SVD of X, then we can rewrite this as:(

VxΣ2
xV

T
x − λZTZ

)
xi = 0

This can be factored as: [
VxΣx

(
I − λ(Σ−1

x V Tx )ZTZ(VxΣ−1
x )
)

ΣxV
T
x

]
wi = 0

or equivalently, if Vx is square and Σx is invertible:(
I − λ(Σ−1

x V Tx )ZTZ(VxΣ−1
x )
)

ΣxV
T
x wi = 0

If we let Y = ZVxΣ−1
x , and qi = ΣxV

T
x wi, the previous equation can be written as:

(I − λY TY )qi = 0

Therefore, qi is an eigenvector of Y TY , or a right singular vector of Y . We can compute wi = VxΣ−1
x qi, or

W = VxΣ−1
x Q = VxΣ−1

x Vy

To summarize, the GSVD is equivalent to two SVDs as follows:

• Let X = UΣxV
T
x be the SVD of A

• Let Y = ZVxΣ−1
x be a “whitening” transformation.

• Let Y = UyΣyV
T
y be the second SVD.

• Final answer: W = VxΣ−1
x Vy

To connect this process to our previous signal separation solution, let’s recall what we did there: Let X be
the mixed signal, dX be the differenced signal (we are now thinking of Z = dX):

• Let X = UxΣxV
T
x be the SVD of X.

• Let dY = dXVxΣ
−1/2
x be the “whitened” signal.

• Let dY = UyΣyV
T
y be the second SVD.

• Then S = Y Vy = XVxΣ
−1/2
x Vy = XW is the clean signal.
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Chapter 7

Local Basis and Dimension
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Chapter 8

Data Clustering

8.1 Introduction

The purpose of clustering data is so that we can represent groups of data by an exemplar, or cluster center.
This is one way to deal with data sets that would otherwise be too large to handle.

Clustering can be intuitively clear, but algorithmically difficult. For example, consider the data in the
first graph in Figure 8.1. I think you would probably agree that there appears to be three natural clusterings.

Figure 8.1: We see data that have no class labels, but there seems to be a natural separation of the data
into three clumps.

A clustering then is primarily building a function that can take a data point as its input, and then output
which cluster (or class) the data point belongs to.

Data may already have labels- We would call a clustering of that type to be supervised learning, since
there are examples of “correct” labels. In our example, and in general, we’ll be working with the unsupervised
learning task, where the data points are given to us with no labels.

Definition: Unsupervised Clustering: Given a data set, X, whose elements are vectors x(i) ∈ IRn,
we want to construct a “membership function” which has its domain in IRn and will output the cluster index
(or label). Defining this function as m, we have, for the ith data point, its associated class label gi:

m(x(i)) = gi

where gi is an integer from 1 to k (k being the number of clusters desired). Later we’ll discuss how the
algorithm might determine the value of k on its own, so for now, we’ll consider k to be given.
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The biggest issue with unsupervised clustering is that the problem specification is very ill-posed, meaning
that there are many, many ways that one might build such a function m. For two extreme examples, consider
these two membership functions:

m1(x(i)) = 1

where i is the index for the data points. Another function that is about as useful as m1 is the following:

m2(x(i)) = i

In this case, every data point is its own cluster. Neither situation is ideal, and we’ll try to be somewhere in
between these extremes.

In order to do determine some “best” clustering, that usually means that we’ll be trying to minimize
some error function, and the easiest way to do this is through Voronoi Cells:

Definition: Let
{
c(i)
}k
i=1

be points in IRn. These

points form k Voronoi Cells, where the jth cell is de-
fined as the set of points that are closer to cell j than
any other cluster:

Vj =
{
x ∈ IRn | ‖x− c(j)‖ ≤ ‖x− c(i)‖, i = 1, 2, . . . , k

}
The points

{
c(i)
}k
i=1

are called cluster centers. In the
uncommon occurrence that a point x lies on the border
between cells, it is customary to include it in the cell
whose index is smaller (although one would fashion the
decision on the problem at hand). The reader might
note that a Voronoi cell has a piecewise linear border
as shown.

Examples in “Nature”

1. In [6], Voronoi cells are used to define the “area potentially available around a tree”. That is, each tree
in a stand represents the center of the cell.

2. Using a map of the campus with the emergency telephone boxes marked out and used as the centers,
we could always tell where the closest phone is located.

We can draw a Voronoi diagram by hand: Between neighboring cells, draw a line (that will be erased at
the end), then draw the perpendicular bisectors for each line drawn. This can get complicated fairly quickly,
so we will be using Matlab or Python to produce the plots. The algorithms that do these plots are very
interesting (see any text in Computation Geometry) but are beyond the scope of our text.

Matlab Example:

X=randn(10,2); %X is a tall matrix.

voronoi(X(:,1),X(:,2));

We can also have Matlab return the vertices of the
Voronoi cells to plot them manually:

[vx,vy]=voronoi(X(:,1),X(:,2));

plot(vx,vy,’k-’,X(:,1),X(:,2),’r*’);
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Python Example

In Python, we’ll also build a Voronoi diagram using 10 random points in the plane. For this, well need
Voronoi from scipy, and some other things for displaying the plot.

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi, voronoi_plot_2d

A=np.random.rand(10,2) # Note that A must be a tall matrix.

vor=Voronoi(A)

# Plot the results

fig = voronoi_plot_2d(vor)

plt.show()

In the algorithms that we work with, it will be convenient to have a function that will identify points
within a given cluster- That is, will have the value 0 if the point is not in a given cluster, or 1 if it is. The
“characteristic function” is typical for that purpose, and we’ll define it as the following:

χi(x) =

{
1 if m(x) = i
0 otherwise

One general way to measure the goodness of a clustering algorithm is to use a measure called the
distortion error for a given cluster i, and the total distortion error1. Given a clustering of N points, let
Ni denote the number of points in cluster i. We first define the error for cluster i, then sum them all for the
overall error. Here is the definition for the distortion error for the ith cluster, where we notice that if the
point x(k) is not in cluster i, then we simply add 0:

Ei =
1

Ni

N∑
k=1

‖x(k) − c(i)‖2 χi(x(k))

so that the overall distortion error is defined to be:

Etotal =

p∑
k=1

Ek

Now that we have a way of measuring the goodness of a clustering, we want to have an algorithm that will
minimize the function.

8.2 K-means clustering

A relatively fast method to perform the clustering is the k−means clustering. In some circles, this is called
Lloyd’s algorithm, and there was an update done by Linde, Buzo and Gray to call that the Linde-Buzo-Gray
(LBG) algorithm [26].

The membership function for both k−means and LBG is defined so that we are in cluster i if we are in
the Voronoi cell defined by the ith cluster center. That is,

m(x) = i iff ‖x− c(i)‖ < ‖x− c(j)‖ i 6= j, j = 1 : p (8.1)

In the rare circumstance that we have a tie, we’ll choose to put the point with the center whose index is
smallest (but this is ad-hoc).

1Some authors do not square the norms, but it is more convenient for the theory, and does not change the end results.
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The Euclidean Distance Matrix

You’ve seen that we’ll need a function that will compute all of the inter-point distances for us. To be more
precise, we’ll need a function that will input two sets of points in IRn, say there are M points in one set
(organized in an M × n matrix), and N points in another (organized in an N × n matrix). The output will
then be an M × N matrix where the (i, j) position is the distance between the point i in the first set and
point j in the second set.

For Matlab/Octave, we’ll write a short function to do this for us called edm.m. which will be available
on the class website. For Python, you can compute the pairwise distances using the example below:

from sklearn.metrics.pairwise import euclidean_distances

X = [[0, 1], [1, 1]]

D=euclidean_distances(X, X) #D is 2 x 2 with distances.

The Algorithm

Keeping in mind that we’ll be using Matlab for its implementation, we’ll write the algorithm in matrix form.

Let X be a matrix of p data points in IRn (so each data point is a row, and the matrix is p× n), and let
C denote a matrix of k centers in IRn (each “center” is a row, and the matrix is k × n).

At each pass of the algorithm, the membership function requires us to take p × k distance calculations,
followed by p sorts (each point has to find its own cluster index), and this is where the algorithm takes most
of the computational time.

K-Means Clustering

Given: p data points in IRn and k cluster centers (as vectors in IRn). Then:

• Sort the data into k sets by using the membership function in Equation 8.1.

• Re-set center ci as the centroid (mean) of the data in the ith set.

• Compute the distortion error.

• Repeat until the distortion error no longer decreases (either slows to nothing or starts increasing).

A Toy Example:

Here we use the k−means algorithm three times on a small data set, so you can have a test set for the code
that you write.

Let the data set X5×2 be the matrix whose rows are given by the data points in the plane:{[
1
2

]
,

[
0
1

]
,

[
−1

0

]
,

[
1
1

]
,

[
−1
−1

]}
You might try drawing these on a plane. You may see a clustering of three points to the right, and a
clustering of two points to the left.

We will use two cluster centers, (typically initialized randomly from the data) in this case:[
0
1

]
,

[
1
1

]
The EDM of distances will be D5×2 and is the distance between our 5 data points and 2 cluster centers.
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The membership function then looks for the minimum in each row, shown as the vector M below:

D =


√

2 1
0 1√

2
√

5
1 0√

5
√

8

 , M =


2
1
1
2
1


Resorting into two clusters, {[

0
1

]
,

[
−1

0

]
,

[
−1
−1

]} {[
1
2

]
,

[
1
1

]}
The cluster centers are re-set as the centroids:[

−2/3
0

]
,

[
1

3/2

]
After one more sort and centroid calculation, we get:[

−1
−1/2

]
,

[
2/3
4/3

]
which does not change afterward (so the clusters also remain the same).

The basic algorithm may have a few shortcomings. For example,

• The centers may be (or become) empty- That is, there are no data points closest to a given center.
This is a good chance of this happening if you simply choose random numerical values as the initial
centers, that’s why we recommend choosing random data points as initial centers- You’ll have at least
one point in each cluster that way.

• We had to pre-define the number of clusters. Is it possible to construct an algorithm that will grow or
shrink the number of clusters based on some performance measure? Yes, and that change is the LBG
algorithm.

Matlab Note

If the “Statistics Toolbox” is available for your copy of Matlab, then kmeans is a built-in command.

Matlab’s clustering routine expects the data to be given row-wise, so if we have p points in IRn, then
Matlab expects the data matrix to be p× n.

Here’s the previous example using the stats toolbox:

X=[1,0,-1,1,-1;2,1,0,1,-1]’;

C=[0,1;1,1]’;

[M,C1]=kmeans(X,2,’start’,C);

If we didn’t have an initial clustering C, the command is a lot shorter. For example, with just the data and
number of clusters, we would have:

X=[1,0,-1,1,-1;2,1,0,1,-1]’;

[M,C]=kmeans(X,2);

Matlab gives us several ways of initializing the clusters- See the documentation.
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Exercises

1. Fill in the missing details from the example in the text: Fill in the EDM and the vector M after the
second sort, and continue the example one more iteration to show that the clusters do not change.
Hint: To compute the distance matrix, use the points as they were originally ordered.

2. Given p scalars, x1, x2, . . . , xp, show (using calculus) that the number µ that minimizes the function:

E(µ) =

p∑
k=1

(xk − µ)2

is the mean, µ = x̄. Hint: We think of x1, . . . , xp as being fixed numerical values, so E is a function of
only one variable µ.

3. Generalize the last exercise so that the scalars (and µ) are now vectors in IRn. That is, given a fixed
set of p vectors in IRn, show that the vector µ that minimizes:

E(µ) =

p∑
k=1

‖x(i) − µ‖2

is the mean (in IRn).

4. Write the following as a Matlab function. The abbreviation EDM is for Euclidean Distance Matrix.
Good programming style: Include comments!

function z=edm(w,p)

% A=edm(w,p)

% Input: w, number of points by dimension

% Input: p is number of points by dimension

% Ouput: Matrix z, number points in w by number pts in p

% which is the distance from one point to another

[S,R] = size(w);

[Q,R2] = size(p);

p=p’;

if (R ~= R2), error(’Inner matrix dimensions do not match.’),end

z = zeros(S,Q);

if (Q<S)

p = p’;

copies = zeros(1,S);

for q=1:Q

z(:,q) = sum((w-p(q+copies,:)).^2,2);

end

else

w = w’;

copies = zeros(1,Q);

for i=1:S

z(i,:) = sum((w(:,i+copies)-p).^2,1);

end

end

z = z.^0.5;

5. If you don’t have the kmeans function built-in, try writing one using the EDM function. It is fairly
straightforward using the EDM function and the min function.
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6. Will the cluster placement at the end of the algorithm be independent of where the clusters start?
Answer this question using all the different possible pairs of initial points from our toy data set, and
report your findings- In particular, did some give a better distortion error than others?

LBG modifications

We can think about ways to prune and grow the number of clusters, rather than making it a predefined
quantity. Here are some suggestions for modifications you can try. This actually changes the k−means
algorithm into the LBG algorithm.

• Split that cluster with the highest distortion measure, and continue to split clusters until the overall
distortion measure is below some preset value. The two new cluster centers can be initialized a number
of ways- Here is one option:

c(i1,i2) = c(i) ± ε

However, this may again lead to empty clusters.

• We can prune away clusters that either have a small number of points, or whose distortion measure is
smaller than some pre-set quantity. It is fairly easy to do this- Just delete the corresponding cluster
center from the array.

8.3 Neural Gas

So far, the clustering algorithms we have considered use arithmetic means to place cluster centers. This
works well when the data consists of “clouds” (coming from a random process, for example). This process
does not work well when the data lies on some curved manifold2

If we imagine all of the data to be on the boundary of a circle, for example, taking an average will place
the cluster centers off the circle.

Figure 8.2: If the data lies on a curved surface, then using the mean may pull the centers (stars in the graph)
out of the data.

But there is something that may be exploited about the cluster centers to help us in visualizing how the
data lies in its space.

It would be helpful if we knew what kinds of structure the data may have. For example, in Figure 8.2, it
would be helpful to know that the data is actually (locally) one dimensional.

The method we will use to determine the structure of the data will be to define connections (or edges)
between clusters. Consider the data in Figure 8.3. It is this kind of structure that the clustering should
reflect- Which cluster centers are “neighboring” points in the data? Just as importantly, which are not
neighbors in the data?

2A manifold is generally defined to be an object that looks locally like IRk for some k. For example, a path in three dimensions
is locally 1 dimensional.
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Figure 8.3: The star shaped points are the cluster centers. It would be nice to know which cluster centers
belong together in a single “blob” of data, versus which cluster centers are in the other set of data.

In mathematical terminology, we want to find what is called a topology preserving clustering. For us, the
topology of the clusters is defined by how the cluster centers are connected to each other (that is, so we know
which cluster centers are neighbors and which are not).

More generally, we want the clustering to be what is called “topology preserving” in the sense that
clusters defined to be neighbors in the cluster center topology are actually neighbors in the data, and vice
versa. Before continuing, some graphical examples should help us with this concept.

In Figure 8.4, we see three topologies mapped to the data, which is a uniform distribution of points in IR2.
In the first picture, the topology of the cells is a one dimensional set. In this situation, the cluster mapping
is not topology preserving, because neighboring cells in the topology are not adjacent in the plane. In the
second situation, we have a three-dimensional topology mapping to the plane. In this case, neighboring data
points in IR2 are mapped to non-neighboring cells in the topology. Only in the third picture do we see that
both parts of the topology preserving mapping are satisfied.

The Neural Gas Algorithm [27, 29, 28] is designed with a couple of big changes in mind (changes from
k-means and LBG).

1. We don’t want to use arithmetic means if possible. It is more desirable to have cluster centers that are
actually embedded in with the data (like in Figure 8.3) rather than every cluster outside of the data
(like in Figure 8.2).

2. We want the algorithm to build connections between the cluster centers. Hopefully this will tell us if
we have separated regions of data (like in Figure 8.3).

Embedding the Clusters

To solve the first problem, we are going to endow the data with the power to attract the cluster centers.
That is, when a data point x is chosen, we will determine which cluster center is closest (the “winner”), and
we will move the cluster center towards that point. We don’t want to go very far, just a slight move in that
direction.

Mathematically, for a given data point x, find the winning center, c and move in the direction x − c.
The update rule would then look like:

cnew = cold + h(t)(x− cold) (8.2)

where h(t) will be a function determining how far to move. Normally, at the beginning of the clustering, h
is relatively large. As the number of iterations grow larger, h gets very small (so that the movement at each
iteration gets very slight).
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Figure 8.4: Which mapping is topology preserving? Figure 1 shows a mapping that is not topology preserving,
since neighboring cells are mapped to non-neighboring points in IR2. On the other hand, the middle clustering
is not topology preserving, because neighboring points in IR2 are mapped to non-neighboring cells in the
topology. Only the third picture shows a topology preserving clustering.
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This method would work very well, but it might result in a lot of empty cluster centers (centers that are
never winners). This is where the concept of the “gas” comes into play- We think of the data as being in a
viscous fluid, like jello.

How does this work in practice? As before, we first select a data point at random, and find the winning
cluster center. We move the cluster center towards the data point. In a viscous fluid, that means that the
cluster centers close to the winner will ALSO move toward the data point (just not as much). Therefore,
instead of updating the single winning center using Equation 8.2, we update all centers.

The key point is that the winning center is attracted to x with the strongest force, then the next closest
center is attracted with the next strongest force, and so on. To do this, we’ll need to sort the centers by
their distance to our data point x.

You might have a negative reaction at this point- Given a lot of cluster centers, this is a lot of sorting.
What is typical is that we will define a value k, and we will only update the k closest centers.

We define a way of setting this measure: We define si to be the number of centers closer to x than c(i).
The easiest way to compute this is to sort the centers by their distance to x, then put the first k indices in
a vector v. So, for example, the vector v can be defined as:

v = {i1, i2, . . . , ik}

so the “winning” center has index ii. Now we define the values s:

si1 = 0, si2 = 1, si3 = 2, . . . , sik = k − 1

Example: Let C = 0.1, 0.2, 0.4, 0.5. If x = 0.25, then i1 = 2, and v = {2, 1, 3, 4}. The values of s: s2 = 0,
s1 = 1, s3 = 2, s4 = 3.

Building Connections

Now that we have set up an algorithm that moves the centers into the data, we look at the problem of
defining connections. The underlying idea is that we’ll connect a winning center to its neighbor, indexed
by v(2). If that connection has not been selected for a long time, that probably means that over time, the
centers have drifted apart, and we should remove the connection.

Therefore, to build connections, we will use two arrays (if the number of centers is k, they are both k×k),
M and T .

Definition: A Connection Matrix, M , is a matrix of 1’s and 0’s where

Mij =

{
1 If cell i connected to j
0 Otherwise

To build the connection matrix, once v is determined, then Mi1,i2 is set to 1, and the age of the connection
Ti1,i2 is set to 0. All the other ages have 1 added to them.

Lastly, we should check to see how many iterations have passed since each edge was constructed. If too
much time has passed (pre-set by some parameter), then remove those connections.

Parameter List

The number of parameters we’ll use is a little large, but coding them is no problem. Here is a list of them,
together with some standard values, where N is the number of data points.

• Number of data points: N

• Relative maximum distance to move, if we update the winning center: ε

εinitial = 0.3 εfinal = 0.05
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• Parameter λ also gives some control over how much to move the winner and neighbors.

λinitial = 0.2N λfinal = 0.01

• The maximum amount of time before a connection is removed is:

Tminitial = 0.1N Tmfinal = 2N

• Maximum number of iterations: tmax= 200N .

The parameters that have an “initial” and “final” time are updated using the power rule. If the initial value
is αinitial and the final value is αfinal, then on iteration i,

αi = αinitial

(
αfinal
αinitial

)i/tmax

(8.3)

The Neural Gas Algorithm:

1. Select a data point x at random, and find the winner, c(i1).

2. Compute v by finding the next k − 1 closest centers.

3. Update the k centers:

c(ik) = c(ik) + ε exp

(
−sik
λ

)
(x− c(ik))

4. Update the Connection and Time Matrices: Set Mi1,i2 = 1, and Ti1,i2 = 0.

Age all connections by 1, Tj,k = Tj,k + 1 for all j, k.

5. Remove all old connections. Set Mj,k = 0 if Tj,k ≥ Tm

6. Repeat.

2021 Note: I’m pulling all of the implementation details out of the main text and will provide it separately-
These details can change a lot over the years.

8.3.1 Project: Neural Gas

This project explores one application of triangulating a data set: Obtaining a path preserving representation
of a data set.

For example, suppose we have a set of points in IR2 that represents a room. We have a robot that can
traverse the room - the problem is, there are obstacles in its path. We would like a discretization of the free
space so that the robot can plan the best way to move around the obstacles.

The data set is given in obstacle1.mat, and is plotted below. The areas where there are no points
represent obstacles. Assignment: Use the Neural Gas clustering using 1, 000 data points and 300 cluster
centers to try to represent the obstacle-free area.

8.4 DBSCAN

The method known as “Density-based spatial clustering of applications with noise”, or more simply as
DBSCAN3 is called a density-based clustering algorithm. What makes it so distinctive from k−means is
that it can create complex shapes for each “cluster”, and secondly, it can identify “outliers”, or points that
shouldn’t be classified as members of any cluster.

3 Ester, Kriegel, Sander, and Xu, “A Density Based Algorithm for Discovering Clusters”, KDD-96 Proceedings, 1996.
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Figure 8.5: The data set that represents the ”free” area. White regions indicate obstacles.

In the method, a “cluster” is defined by growing a set of points using a density criterion. That is, to be
considered neighbors, a point will need to be within a given ε, of the center, and further, there will need to
be a certain number of points also within ε before the set is considered a cluster. In this way, we might think
of a cluster as, what some people would call, a “maximal set of density-connected points”.

So given ε and a value for the smallest number of points allowed to make a cluster, MinPts, the algorithm
separates data into three categories: A core point, a border point, or noise.

• A point is a core point if it has more than MinPts within ε.

• A point is a border point if if has fewer than MinPts within ε, but is still in the neighborhood of a
core point.

• A noise point is a point that is not a core point, nor a boundary point.

What results from the DBSCAN method is not a set of
cluster centers- Rather, each “core point” is provided
with an index of which cluster it belongs to. So the
plot of the output is straightforward, and one such
output is given in the figure to the right.
The algorithm for DBSCAN proceeds with two helper
functions: One function will will take in the core
point and epsilon, and will indicate which points are
within ε of the core point. In our Matlab code, this is
RegionQuery.

The second helper function is designed start with some set of neighboring points from a core point. It
then expands the given cluster by seeing if the neighboring points also contain the minimum number of
neighbors within ε, and continues until it runs out of points. We would say in this case that the helper
function is collecting all points that are “density-reachable” from the core. Let’s define that term- it is
actually a bit nuanced, so we’ll take a little side trip to discuss it.
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8.4.1 Density Reachable Points

Definition: A point q is directly density-reachable from a point p if point p is a core point, and q is in
the ε−neighborhood of p.

Below is an example of two points, p and q with ε shown, and MinPts=4. We see that point p has 4 points
within its neighborhood, so point p is a core point. Point q has only three points in its neighborhood, so it
is NOT a core point.

In the figurea to the right, point q is directly density-
reachable from p, but p is not directly density-
reachable from q. This is an important example, in
that it shows that the property of density-reachability
is asymmetric.

aAdapted from a talk by Prof Jing Gao of SUNY Buffalo.

Next we have simply density-reachable:

Definition: A point p is density-reachable from a
point q with respect to ε and MinPts if there is a chain
of points p1, p2, . . . , pn, where p1 = q and pn = p, such
that pi+1 is directly density-reachable from pi.
In the figurea to the right, the point q is density reach-
able from p through r. But again, as last time, p is
not density reachable from q since q is not a core point
(MinPts=6).

a From “ML—DBSCAN reachability and connectivity”, from
GeeksforGeeks.com

In our last definition, consider two border points of the same cluster C. They are possibly not density
reachable from each other because of the core point condition. However, there must be a core point in C
from which both border points of C are density reachable. This this is the motivation behind the next
definition.

Definition: A point p is density-connected to a
point q with respect to ε and MinPts if there is a point
o such that both p and q are density-reachable from o
with respect to ε and MinPts.
We might note that if p is density connected to q, then
q is density connected to p. In the figurea to the right,
MinPts=6, so points p, q are not core points. However,
they are both reachable from core point o, so they are
density connected.

a From “ML—DBSCAN reachability and connectivity”, from
GeeksforGeeks.com

Before we go to the pseudocode for the algorithm, let’s look at one more example, where we can consider
the three types of points and what they might contribute to the clustering. Consider the figure below.
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In this diagram4, minPts= 4. Point A and the other red points are core points, because the area
surrounding these points in an ε radius contain at least 4 points (including the point itself). Because they
are all reachable from one another, they form a single cluster. Points B and C are not core points, but are
reachable from A (via other core points) and thus belong to the cluster as well. Point N is a noise point
that is neither a core point nor directly-reachable.

From the pseudocode for DBSCAN below, you’ll see that the concept of density-reachable points is critical
to the algorithm.

8.4.2 Pseudocode for DBSCAN

Here is the pseudo-code for DBSCAN. It’s actually quite simple:

for each point x in X do:

if x is not yet classified then:

if x is a core point then:

collect all points density-reachable to x,

and assign them to a new cluster.

else

assign x to NOISE

We will see this structure in the Matlab/Octave files5 that we’ll be using for the homework. Python has
a built-in command, and you may use that as a substitute, although you should look at the Matlab code.

Theoretical Results

There are a couple of rather nice results given in the original paper characterizing the clusters that DBSCAN
produces.

• For all points p, q in a cluster C, p and q are density-connected.

• Given a cluster C with an arbitrary core point p, the cluster C is equal to the set of all points that are
density-reachable from p.

• Points that are not directly density-reachable from at least one core point are classified as noise.

Examples and Rules of Thumb

Finally, we need to consider when DBSCAN works well, and when it doesn’t (or might not) work well.
DBSCAN, as we introduced it, works very well to construct odd-shaped clusters and to identify what might
be noise. Here is a template example of that below6, with the original data given to the left, and a result of
DBSCAN output to the right. It seems like an intuitively good clustering.

4Figure and caption from https://en.wikipedia.org/wiki/DBSCAN
5The files we’ll use were authored by S. Mostapha Kalami Heris of Yarpiz.com, 2015.
6Adapted from a talk by Prof Jing Gao of SUNY Buffalo.
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So when might DBSCAN have trouble? The biggest problem with DBSCAN is that the clustering it
provides can be extremely sensitive to the two parameters that the user has to provide (ε and MinPts). We’ll
see examples of that in the homework, but there’s a nice example below7 where the original data consists
of several regions of differing size and differing density- with some very dense clusters buried inside the less
dense cluster. We can see that changing the ε by a very small amount completely changes the nature of the
clusters found. For the results on the left, the parameters were ε = 9.92 and MinPts=4. On the right, same
MinPts, but ε was changed to 9.75.

There are some rules of thumb for setting the parameters8. For example, MinPts should be at least
twice the dimension of the data. If our data is in the plane, that would make the default value 4. It is
recommended that for datasets that have a lot of noise, that are very large, that are high- dimensional, or
that have many duplicates it may improve results to increase MinPts.

The value of ε is harder to estimate. Here are some considerations:

• ε should be as small as possible.

• Some researches say you should measure the distance to the fourth nearest neighbor for 2-dimensional
data, or the distance to the kth neighbor, where k is twice the dimension.

• The value might be highly problem dependent. For example, in a clustering problem using GPS, it
might make physical sense to set ε to 1 km.

7Adapted from a talk by Prof Jing Gao of SUNY Buffalo.
8From Schubert, Sander et al in “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN” ACM

Transactions on Database Systems. 2017
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And of course, there is the question of how much work should we put into the estimate, when varying these
parameters may give us insight into what the point density is like in our example.

8.5 Comparisons between the algorithms

As we look back at the algorithms, each was designed to extract different information from data.

1. k−means:

• The k−means algorithm forms Voronoi cells in the plane.

If believe we have clusters that can be separated by the polygonal regions the the Voronoi cells
produce, then k−means may work well.

In our examples, k−means would not have worked well for something like interwoven spirals.

• The k−means algorithm is fast and the output is easy to interpret (giving you templates for the
data).

We found that k−means did a fantastic job separating colors in the image segmentation problem,
and in clustering the handwritten digits.

• How are new points handled?

As another point of comparison, if you’re given new data points, it is easy to find which cluster
the point belongs to: Take the distance to each cluster, and find the center closest to it.

• Probably the biggest issue with using k−means is that the clustering you get depends on the
initialization.

2. Neural Gas:

The Neural Gas algorithm is an algorithm designed to uncover the topological structure of the data.
The cluster centers here are not centers in the k−means sense; they do not represent a small number
of template data points (like in the handwritten digits example). However, if we do want to use the
cluster points as centers, we can do that.

• The cluster points, used as cluster centers, form Voronoi cells for membership- like k−means.

We have had some success in treating these as cluster centers when the data actually represents
an object in lower dimensional space (something called neural charts9). In this case, we wanted
to construct local coordinate systems (using a local version of the PCA), and by using Neural
Gas, we were able to make sure that the origin to each coordinate system was actually embedded
in the data.

• How are new points handled? As with k−means, the cluster with the closest distance would give
the cluster membership.

• As with k−means, probably the biggest issue with Neural Gas is that the cluster points and con-
nections change depending on the initialization (and of course with how you set the parameters).

3. DBSCAN:

DBSCAN is an interesting algorithm in that it allows you to pick out “noisy” points. The values of
the two inputs, ε and MinPts can be adjusted from anywhere between two extremes- On one extreme,
every point is “noise” (ε too small or MinPts too large), or on the other extreme, the entire data set is
one big cluster (ε too large and/or MinPts too small).

• We have no cluster points per se, every point is either in a cluster (with an index provided), or is
classified as noise.

9 “Empirical Dynamical Systems Reduction II: Neural Charts”, D. Hundley and M. Kirby. In Semi-analytic methods for
the Navier-Stokes Equations, Edited by K. Coughlin, p. 65-83, 1999.
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• With new data, we would either have to re-run the algorithm, or come up with some algorithm
to decide which cluster it should belong to:

– With only the original data available, we could find k closest original data points from the
new point, and either use the closest point or some weighted average of the k original point
classifications to determine which cluster the new point belongs to.
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Part II

Functional Representations
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Chapter 9

Optimization

9.1 Introduction: Going from Data to Functions

In this chapter, we take a turn into the heart of function building (which is, in turn, the primary topic of
machine learning and model building as well).

In many cases, we’ll have some kind of proposed form for a function. For example, in the line of best fit
problem, the proposed form for the line was: y = mx+ b, or F (x) = mx+ b, where we needed to determine
the model parameters m and b. Given data points (xi, ti) where t is for targets, this translated to our goal
of finding m, b that satisfied some equation or system of equations:

F (x1) = t1
F (x2) = t2

...
F (xp) = tp

There was no exact solution to this system, which gives us error, which is typically a sum-of-squares:

E(m, b) = (t1 − y1)2 + (t2 − y2)2 + · · ·+ (tp − yp)2 =

p∑
k=1

(tk − yk)2

where yi is our model output, F (xi). And here we go- We need to minimize the error. In fact, most problems
in machine learning (and model building) are cast as optimization problems.

How do we optimize a function? We learned the steps back in Calculus, and the algorithm depended on
whether or not we had a bounded domain. We’ll assume a domain that is not bounded for the remainder of
this chapter, unless specified otherwise.

In the unbounded case, we know that the candidates for the maximum and minimum are found among
the critical points of f (where f ′(x) = 0 or where the derivative does not exist). Therefore, we need to have
an algorithm that can seek out the roots (or the zeros) of a function.

9.2 Optimization and Calculus

As discussed, there is a close relationship between finding the roots to a function and optimizing a function.
For the roots, we solve for where g(x) = 0, and in the optimization problem, we solve for where f ′(x) = 0.

Therefore, discussions about optimization often turn out to be discussions about finding roots. In that
spirit, we look at a very basic algorithm for finding roots- An algorithm called “The Bisection Method”.
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9.2.1 The Bisection Method

The motivation for this method comes from the Intermediate Value Theorem from Calculus- In this case,
suppose that our function g is continuous on [a, b], and further g(a) and g(b) have different signs (more
compactly g(a)g(b) < 0), then there is a c in the interval such that g(c) = 0.

Now, given such an interval [a, b], we can get a better approximation by breaking the interval in half.
Here is the algorithm:

The Bisection Algorithm to Solve f(x) = 0

• Initialize with function f(x), values of a, b and tol, so that the root of f is inside the interval
[a, b] (we should have f(a)f(b) < 0).

• Set fa = f(a), fb = f(b).

• Main loop:

– Set c = (a+ b)/2, and compute fc = f(c).

– If fafc < 0, then the new interval is [a, c]. Set b = c, fb = fc.

Otherwise, the new interval is [c, b]. Set a = c, fa = fc

– Stopping criteria (one or more):

∗ (b− a)/2 < tol, or

∗ |fc| < tol (or f(c) is actually 0)

– At the end, output the midpoint of the current interval as the solution: (a+ b)/2.

The nice thing about the bisection method is that it is easy to implement. It takes a lot of iterations to
converge, however.

There are examples of this algorithm available to you in Matlab and Python that we wrote ourselves
directly from our pseudo-code. At the end of this section, we’ll discuss the built-in code.

When using the Bisection Method in either Matlab or Python, we need to be able to pass in the name
of the function to our algorithm. Here is an example, where we solve x3 + x− 1 = 0 with a starting interval
of [0, 1] and a tolerance of “5e-5” (which is short for scientific notation, 5× 10−5).

In Matlab, we’ll assume that bisect.m is in the folder or search path, and in Python, we’ll assume that
the definition of the function bisection has been run (again, as a reminder, these are functions that we
defined and are available on our class website).

Below we show how to create what is referred to as an anonymous function, and we’ll use that to pass
in the function g(x) into our algorithm. The nice thing about these kinds of functions is that they do not
need a separate file to define them (like Matlab), nor do the need a whole def section in Python. Of course,
if your function is more complicated, you may need to go that route, and in the next section we’ll have an
example of creating that kind of function.

Matlab Code Example Python Code Example

>>f= @(x) x.^3+x-1; >>> f = lambda x: x**3 + x - 1

>>x=bisect(f,0,1,5e-5); >>> x=bisection(f,0,1,5e-5)

9.2.2 Newton’s Method

Another method we have from Calculus is Newton’s Method. Newton’s Method is a lot faster, but it also
requires the computation of the derivative. The formula is given below. If you’re not sure where the formula
comes from, we’ll review it in class (you can also look it up online or in a calculus text).
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Newton’s Method
Newton’s method is used to locate a root to a function g. It uses an initial guess and produces a sequence

of values that (hopefully) converge to a root.
Given g(x), and an initial guess of the root, x0, we iterate the following:

xi+1 = xi −
g(xi)

g′(xi)

Coding this is straightforward; the biggest consideration is how we’ll pass in the function. It might be easiest
to have the function compute both the value of the function and the value of the derivative at a given point.
That is currently the way the code is written.

We might mention that the code might be more streamlined if you have one (anonymous) function to
handle the computation of g, and a second to compute the computation of the derivative, g′. Feel free to
make those changes.

To use either the bisection or Newton’s method Matlab functions, we’ll need to define the function (that
we’re finding the roots to). You can either use an anonymous function handle (defined in-line) or use an
m−file- It is useful to go ahead and program in both f and the derivative so you can use either bisection or
Newton’s method. Here’s an example finding a root to ex = 3x.

First, we’ll write a function file. To the left is Matlab, to the right is Python:

function [y,dy]=testfunc01(x)

% Test function e^x-3x

y=exp(x)-3*x; % Output y

dy=exp(x)-3; % and dy

import math

def testfunc01(x):

y=math.exp(x)-3*x

dy=math.exp(x)-3

return y,dy

We’ll put together examples in Matlab and Python. To keep things tidy, we’ll have the function definitions
in the same file as the script. (This is available as ExScript1.m or ExScript1.py on our class website).

Built-in Methods

I don’t believe that Matlab has the Bisection Method or Newton’s Method specifically built-in on their own.
Rather, it uses fzero as a general solver for the roots of a function, but it uses methods that don’t rely on
the derivative (bisection is one option), so it is slower. It also provides fminbnd, fminunc, fmincon and
others in the Optimization toolbox. For now, we’ll just stick to our two algorithms.

In contract, in Python we have scipy.optimize.newton(), where the inputs vary depending on the
information available.

9.3 Homework

1. It’s always good to be able to do a simple example of these algorithms “by hand”. Try these out (you
may use a hand calculator):

(a) Estimate the first root of ex − 5x by computing three iterations of the bisection method on the
interval [0, 1].

(b) Estimate the second root of ex − 5x by computing Newton’s Method twice, with a starting guess
of x0 = 2.

2. Use the example script file in Matlab or Python to solve the next two problems. You can put them
both on the same script, both functions can be anonymous.

(a) Use the bisection method to find the root correct to 6 decimal places: 3x3 + x2 = x+ 5.
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(b) Use Newton’s Method to find the same root.

3. In this exercise, we want to look at how fast Newton’s Method will converge as a function of the initial
guess. We’ll use f(x) = x3−2 (so we’ll be estimating 3

√
2). We will choose the initial guess x0 from the

interval [−2, 2], and run Newton’s Method- Keeping track of how many iterations it takes to converge.

We then repeat this for another x0, and another x0- In fact, we take 150 values between [−2, 2] for the
initial condition, and plot the number of iterations for convergence (in red triangles below).

We’ll then plot the curve f(x) = x3 − 2, and the derivative y = 3x2 in the same graph.

See if you can examine the curve and explain the shape you see.

(Extra for students with coding experience: Reproduce the graph for yourself!)

9.4 Linearization

Before continuing with these algorithms, it will be helpful to review the Taylor series for a function of one
variable, and see how it extends to functions of more than one variable.

Recall that the Taylor series for a function f(x), based at a point x = a, is given by the following, where
we assume that f is analytic:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(x− a)n

Therefore, we can approximate f using a constant:

f(x) ≈ f(a)

or using a linear approximation (which is the tangent line to f at a):

f(x) ≈ f(a) + f ′(a)(x− a)

or using a quadratic approximation:

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2
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We can do something similar if f depends on more than one variable. For example, in Calculus III we look
at functions like

z = f(x, y)

In this case, the linearization of f at x = a, y = b is given by the tangent plane:

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

Similarly, if y = f(x1, x2, . . . , xn), then the tangent plane at x1 = a1, . . . , xn = an is given by:

z =f(a1, a2, . . . , an) + fx1(a1, . . . , an)(x1 − a1) + fx2(a1, . . . , an)(x2 − a2) + . . .

fxn(a1, . . . , an)(xn − an)

If we want to go further with a second order (quadratic) approximation, it looks very similar. First, if
z = f(x, y) at (a, b), the quadratic approximation looks like this:

z = f(a, b) + fx(a, b)(x− a)+fy(a, b)(y − b) +
1

2
[fxx(a, b)(x− a)2+

2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2]

where we assume that fxy(a, b) = fyx(a, b). For functions of n variables, the notation gets a little awkward.
We’ll define a new structure that will make the notation work a little better.

Gradient and Hessian

Let y = f(x1, . . . , xn) be a real valued function of n variables. To make the notation a bit easier to read,
we’ll denote the partial derivatives using subscript notation, where

∂f

∂xi

.
= fi

∂2f

∂xi∂xj

.
= fji

(Does the order of the differentiation matter? In the last equation, could I have written fij?)
We’ll recall from Calculus III that the gradient of f is usually defined as a row vector of first partial

derivatives:
∇f = [f1, f2, . . . , fn]

The n×n matrix of second partial derivatives is called the Hessian matrix, where the (i, j) element is fij ,
or

Hf =


f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

fn1 fn2 · · · fnn


Using this notation, the linear approximation to f(x1, . . . , xn) = f(x) at the point x = a is:

f(a) +∇f(a)(x− a)

(That last term is a dot product, or a row vector times a column vector) The quadratic approximation
to f is:

f(a) +∇f(a)(x− a) +
1

2
(x− a)THf(a)(x− a)

As another example, suppose we want the quadratic approximation to the function

w = x sin(y) + y2z + xyz + z

107



Find the quadratic approximation to w at the point (1, 0, 2).

SOLUTION: We need to evaluate f , all the first partials, and all the second partials at the given point:

f(1, 0, 2) = 1 · 0 + 0 · 2 + 0 + 2 = 2

Now, using our new notation for partial derivatives:

f1 = sin(y) + yz ⇒ f1(1, 0, 2) = 0

f2 = x cos(y) + 2yz + xz ⇒ f2(1, 0, 2) = 3

f3 = y2 + xy + 1 ⇒ f3(1, 0, 2) = 1

Therefore, ∇f(1, 0, 2) = [0, 3, 1]. Now computing the Hessian, we get: 0 cos(y) + z y
cos(y) + z −x sin(y) + 2z 2y + x

y 2y + x 0

∣∣∣∣∣∣
x=1,y=0,z=2

=

 0 3 0
3 4 1
0 1 0


Now we can put these into the formula for the quadratic approximation:

2 + [0, 3, 1]

 x− 1
y

z − 2

+
1

2
[x− 1, y, z − 2]

 0 3 0
3 4 1
0 1 0

 x− 1
y

z − 2


And expanded, we could write this as:

2 + 3y + (z − 2) +
1

2

[
6(x− 1)y + 4y2 + 2y(z − 2)

]
=

−2y + z + 3xy + 2y2 + yz

This is the quadratic approximation to x sin(y) + y2z + xyz + z at the point (1, 0, 2).

Linearization, Continued

Suppose we have a general function G that inputs n variables and outputs m variables. In that case, we
might write G as:

G(x) =


g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gm(x1, x2, . . . , xn)


For example, here’s a function that inputs two variables and outputs 3 nonlinear functions:

G(x, y) =

 x2 + xy + y2 − 3x+ 5
sin(x) + cos(y)

1 + 3x− 5y + 2xy

 (9.1)

We need a new way of getting the derivative- In this case, it is called the Jacobian matrix. If G maps
IRn to IRm, then the Jacobian matrix is m×n, where each row is the gradient of the corresponding function:

G(x) =


g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gm(x1, x2, . . . , xn)

 ⇒ JG =


∇g1(x1, x2, . . . , xn)
∇g2(x1, x2, . . . , xn)

...
∇gm(x1, x2, . . . , xn)
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Or, written out, the (i, j) element of the Jacobian matrix for G is:

(JG)ij =
∂gi
∂xj

Continuing with our previous example (Equation 9.1), we’ll construct the Jacobian matrix:

G(x, y) =

 x2 + xy + y2 − 3x+ 5
sin(x) + cos(y)

1 + 3x− 5y + 2xy

 ⇒ JG =

 2x+ y − 3 x+ 2y
cos(x) − sin(y)
3 + 2y −5 + 2x


As a second example, suppose that we have a function f that maps IRn to IR. Then we could let

G(x) = ∇f(x)

Note that we have to think of the gradient as a column vector instead of a row, and the ith row is:

fxi(x1, x2, . . . , xn)

so that G maps IRn to IRn. Furthermore, in that case, the Jacobian of G is the Hessian of f :

(JG)ij =
∂fxi
∂xj

=
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xi∂xj

(We’re using Clairaut’s Theorem to simplify our expression).
Now we get to the linearization of the function G at a point x = a:

G(a) + JG(a)(x− a)

To illustrate this notation, let’s linearize Equation 9.1 at the origin (0, 0).

G(0, 0) =

 5
1
1

 JG(0, 0) =

 −3 0
1 0
3 −5


Therefore, the linearization at the origin is: 5

1
1

+

 −3 0
1 0
3 −5

[ x
y

]
=

 5− 3x
1 + x

1 + 3x− 5y


You might notice that each row is the linearization of the corresponding function from G- For example, 1+x
is the linearization of sin(x) + cos(y) at the point (0, 0).

Now we can get back to Newton’s Method.

Multivariate Newton’s Method

In the general case, we are solving for the critical points of some function f ,

∇f(x) = 0

That is, if f depends on n variables, then this is a system of n equations (in n unknowns).
As we did in the previous section, we can think of the gradient itself as a function:

G(x) = ∇f(x)
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and think about how Newton’s Method will apply in this case.
Recall that in Newton’s Method in one dimension, we begin with a guess x0. We then solve for where

the linearization of f crosses the x−axis:

f(x0) + f ′(x0)(x− x0) = 0

From which we get the formula

xi+1 = xi −
f(xi)

f ′(xi)

Now we do the same thing with the vector-valued function G, where G : IRn → IRn. Start with an initial
guess, x0, then we linearize G and solve the following for x:

G(x0) + JG(x0)(x− x0) = 0

Remember that JG, the Jacobian of G, is now an n × n matrix, so this is a system of n equations in
n unknowns. Using the recursive notation, and solving for x, we now get the formula for multivariate
Newton’s Method:

xi+1 = xi − JG−1(xi)G(xi)

We should notice the beautiful way that method generalizes to multiple dimensions- The reciprocal 1/f ′(xi)
becomes the matrix inverse: JG−1(x0).

9.5 Nonlinear Optimization with Newton

Now we go back to our original question: We want to optimize a function whose domain is multidimensional:

min
x

f(x) or max
x

f(x)

where it is assumed that f : IRn → IR. To use Newton’s Method, we let G = ∇f for the formulas in the
previous section. Here’s a summary:

Multivariate Newton’s Method to Solve ∇f(x) = 0

Given an initial x0, compute a sequence of better approximations to the solution:

xi+1 = xi −Hf−1(xi)∇f(xi)

where Hf is the Hessian matrix (n× n matrix of the second partial derivatives of f).

Example: Minimize f(x, y) = 1
4x

4 − 1
2x

2 + 1
2y

2.
SOLUTION: First, we can use Calculus to check the computer output. The gradient is:

∇f = [x3 − x, y]

so that the critical points are (−1, 0), (1, 0) and (0, 0).

9.5.1 Issue: Local Extrema

As in calculus, once we find the critical points, we need to determine if they represent a local max, a local
min, or something else (like a saddle).

We may recall the “second derivatives test” from Calculus III- It actually uses the Hessian:
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The Second Derivatives Test for z = f(x, y) at critical point (a, b)

Let D = fxx(a, b)fyy(a, b)− f2
xy(a, b). If

• If D > 0 and fxx(a, b) > 0, then f(a, b) is a local min.

• If D > 0 and fxx(a, b) < 0, then f(a, b) is a local max.

• If D < 0, then f(a, b) is a saddle point.

Returning to our example, the Hessian of f :

Hf =

[
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
=

[
3x2 − 1 0

0 1

]
Therefore, the second derivatives test is a test using the determinant of the Hessian at the critical point. In
this example, at (±1, 0), the determinant is positive and fxx(±1, 0) is positive. Therefore, f(±1, 0) = 1/4 is
the local minimum. We have a saddle point at the origin.

9.5.2 Issue: Matrix Inversion

Since the multivariate Newton’s method requires us to invert an n × n matrix, we need to be careful. In
fact, many algorithms will watch the eigenvalues of the Hessian to make sure that the matrix doesn’t get
too close to being non-invertible. One way to do this is to track what is called the condition number of
the matrix. The condition number of the matrix is defined as:

k =
|λmax|
|λmin|

.

If the matrix is not invertible, or very close to being not invertible, then λmin ≈ 0, which makes the condition
number blow up to a very large number.

One way we may avoid this problem is through the use of the pseudo-inverse, but one need to be careful
about when to employ this technique.

Multivariate Newton’s Method, in Matlab and Python

These will be provided in a separate handout.

9.6 Gradient Descent

The method of gradient descent is an algorithm that will search for local extrema by taking advantage of
the fact about gradients:

The gradient of a function at a given point will point in the direction of fastest increase
(of the function).

Therefore, if we started at a point (or vector) a, if we want to find a local maximum, we should move in
the direction of the gradient. To locate a local minimum, we should move in the direction negative to the
gradient.

Therefore, the method of gradient descent proceeds as follows: Given a starting point a and a scalar α
(which is referred to as the step size), we iterate the following:

xi+1 = xi − α∇f(xi)
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The method is fairly quick, but can have bad convergence properties- Mainly because we have that
step size. There is a way to get “best” step size α. In the following, we’ll continue with finding the local
minimum.

Once we choose a direction of travel, the idea will be to follow that line until we find the minimum of the
function (along the line). That is, we have a small optimization problem. Find the value of t that minimizes
the expression:

f(a− t∇f(a))

This is called a line search, and can be time consuming. Before continuing, let’s look at this more closely.
Define a new function φ(t) as the output along the line:

φ(t) = f(a− tu) = f


a1 − tu1

a2 − tu2

...
an − tun


where u is a vector and f depends on x1, . . . , xn.

Then optimizing this means to find where the derivative of φ is zero. Let’s compute the derivative using
the chain rule:

φ′(t) =
∂f

∂x1

∂x1

∂t
+ · · ·+ ∂f

∂xn

∂xn
∂t

=
∂f

∂x1
u1 + · · ·+ ∂f

∂xn
un = −∇f(a− tu) · u

(Note the minus sign from differentiating −tu). Thus, setting this to zero and solving should give us an
optimal step size.

Example: By hand, compute one step of gradient descent to the following (with optimal step size).

f(x, y) = 4x2 − 4xy + 2y2 (x0, y0) = (2, 3).

SOLUTION:

Step 1: Compute the gradient and evaluate it at (2, 3):

∇f = [8x− 4y,−4x+ 4y] ⇒ ∇f(2, 3) = [4, 4]

Step 2A: Find the parametric equations of the line along which we will travel (h is the stepsize to be found
later):

x0 − h∇f(x0) =

[
2
3

]
− h

[
4
4

]
=

[
2− 4h
3− 4h

]
Step 2B: Apply f to the path found in part 2A. This is the expression we want to minimize.

φ(h) = f(x0 − h∇f(x0) = f(2− 4h, 3− 4h)

We could write out this expression, but it is not needed at the moment.

Step 2C: To find the optimal path, we define φ(h) to be the function restricted to the line:

φ(h) = f(2− 4h, 3− 4h)

We’ll need to evalate the gradient along the line, so let’s go ahead and compute that:

fx(2− 4h, 3− 4h) = 8(2− 4h)− 4(3− 4h) = 16− 32h+ 12 + 16h = 4− 16h

fy(2− 4h, 3− 4h) = −4(2− 4h) + 4(3− 4h) = −8 + 16h+ 12− 16h = 4
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Step 3: Take the derivative of φ, set it equal to zero, and solve for h.

φ′(h) = −∇f(2− 4h, 3− 4h) · ∇f(2, 3) = −[4− 16h, 4]

[
4
4

]
= −32 + 64h

Therefore, the derivative is zero for h = 1/2, and the second derivative is positive (φ′′(h) = 64), so this
is indeed where the minimum occurs.

Step 4: Now, using that step size to advance to the next point in the domain.

x1 =

[
2
3

]
− 1

2

[
4
4

]
=

[
0
1

]
And now we would repeat our steps until we find the minimum, or some other stopping criteria is met.

9.6.1 Backtracking line search

Rather than a regular line search for the minimum, we might estimate the step size at each iteration using
what’s called a backtracking line search. We’ll start with a larger step-size, and at each iteration, we’ll check
the inequality:

f(xt − αt∇f(xt) ≤ f(xt −
αt
2
‖∇f(xt)‖2

If the inequality is verified, the current step size is accepted. If not, we divide it by 2 and check again.

9.6.2 Gradient Descent with Data

Going back to our introduction in Section 9.1, we said that typically, we’ll have some data and a model
function with some parameters, F (x; w). For example, in the line of best fit problem, the proposed form for
the line was: y = mx + b, or F (x;m, b) = mx + b, where we needed to determine the model parameters m
and b. Given data points (xi, ti) where t is for targets, we want to minimize the error between the desired
targets tk and the model output yk = F (xk):

E(m, b) = (t1 − y1)2 + (t2 − y2)2 + · · ·+ (tp − yp)2 =

p∑
k=1

(tk − yk)2

If we compute the gradient, we’ll need ∂E/∂m and ∂E/∂b:

∂E

∂m
= 2

p∑
k=1

(tk−yk)

(
−∂yk
∂m

)
= 2

p∑
k=1

(tk−yk) (−xk)
∂E

∂b
= 2

p∑
k=1

(tk−yk)

(
−∂yk
∂b

)
= 2

p∑
k=1

(tk−yk)(−1)

Finally, our goal: Update parameters m and b to make the error decrease (be sure you’re moving in the
direction of the negative gradient!). [

mnew

bnew

]
=

[
mold

bold

]
− α∇E(m, b)

For y = mx + b, we could actually solve the problem exactly by setting the partial derivatives to zero,
however, in the more general setting, we see that, if wi is a parameter for the model, then

∂E

∂wi
= 2

p∑
k=1

(tk − yk)

(
−∂yk
∂wi

)
and the update rule is:

wnew
i = wold

i − α
∂E

∂wi
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To do the full gradient descent, we see that we are required to take a sum over all the data, and that’s for
each training parameter (and for each step we take). To understand the implications of this, consider a small
training problem (one that we’ll actually work with later). Suppose our data input consists of 60,000 images
(to be specific, let’s say 28× 28 grayscale), so that the domain is in IR784, with a scalar output (for example,
classifying small images would be such a case). The model we will build later will have 101, 770 parameters.
Practically speaking, it would take a very very long time to find an approximation to a local minimum for
the error. We need a faster approach (that will be the topic of the next section).

9.7 Exercises

1. Suppose we have a function f so that f(0, 1) = 3 and ∇f((0, 1)) = [1,−2]. By hand, use the lineariza-
tion of f to estimate f(1/2, 3/2).

2. Let f(x, y) = x2y + 3y. By hand, compute the linearization of f at x = 1, y = 1.

3. Let f(x, y) = xy+ y2. At the point (2, 1), in which direction is f increasing the fastest? How fast is it
changing? (These are quickly done without a computer).

4. By hand, use the second derivatives test to classify the critical points of the following functions:

(a) f(x, y) = x2 + xy + y2 + y

(b) f(x, y) = xy(1− x− y)

5. Use Newton’s Method (on the computer) to find two critical points of f correct to three decimal places.

f(x, y) = x4 + y4 − 4x2y + 2y

Hint: There are three of them in −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, so try several starting points.

6. By hand, perform the computations involved in the second step of the gradient descent example (with
f(x, y) = 4x2 − 4xy + 2y2).

7. We said that, in order to optimize the step size, we set the derivative of φ to zero:

φ′(t) = ∇f(a− tu) · u = 0

Show that this implies the following theorem about the method of gradient descent:

∇f(xi+1) · ∇f(xi) = 0

or, the gradient vectors from one step to the next are orthogonal to each other.

9.8 Stochastic Gradient Descent (SGD)

At the end of the section on Gradient Descent, we discussed its primary drawback. If you have a large-scale
optimization problem, it is practically impossible to use regular gradient descent. However, in recent years
researchers have had great success in using an approximation to the gradient- That method is Stochastic
Gradient Descent (SGD).

Interestingly, the method first appeared by Herbert Robbins and Sutton Monroe, back in 1951. What
has made it popular recently is the appearance of very large scale problems, starting approximately 2005
with the invention of the convolution neural network, and developing into what we now call “deep learning”.
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The idea is actually very easy; the fact that the algorithm still converges is more complicated. The idea
is that, instead of using all of the data to estimate the gradient, we use only one point. In terms of our
previous example before the exercises, recall that

∂E

∂m
= 2

p∑
k=1

(tk−yk)

(
−∂yk
∂m

)
= 2

p∑
k=1

(tk−yk) (−xk)
∂E

∂b
= 2

p∑
k=1

(tk−yk)

(
−∂yk
∂b

)
= 2

p∑
k=1

(tk−yk)(−1)

In SGD, we estimate the partial derivatives. Below, r is an index chosen at random (uniformly):

∂E

∂m
≈ 2(tr − yr)

(
−∂yr
∂m

)
= 2(tr − yr) (−xr)

∂E

∂b
≈ 2(tr − yr)

(
−∂yr
∂b

)
= 2(tr − yr)(−1)

Interestingly, with this change, we cannot expect strict convergence of the error to its minimum. Here
are some samples from the following website (go there and try these out!):

fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

Just to clarify the web page’s notation- Suppose that we have 100 data points in IR2, (xi, ti) and we want
to find a line of best fit, y = mx+ b. Then the usual error function is given by

E(m, b) = (t1 − y1)2 + (t2 − y2)2 + (t3 − y3)2 + · · ·+ (t100 − y100)2 =

100∑
i=1

(ti − yi)2

or, in terms of m, b:

E(m, b) = (t1 − (mx1 + b))2 + · · ·+ (t100 − (mx100 + b))2 =

100∑
i=1

(ti − (mxi + b))2

On the website, they say: We want to minimize F (x), where the error function is given by

n∑
i=1

fi(x)

To make this clear, the x being referred to there is our vector (m, b), and

fi(x)⇒ (ti − yi)2 or (ti − (mxi + b))2

Now, in place of the full gradient, we’re estimating the gradient using a single point. Suppose we’re on
some iteration, and we choose data point 10. Then we estimate the error function using the 10th data point
(on this iteration):

E(m, b) ≈ (t10 − y10)2 or (t10 − (mx10 + b))2

so that the partial derivatives are evaluated as:

∂E

∂m
= 2(t10 − (mx10 + b))(−x10)

∂E

∂b
= 2(t10 − (mx10 + b))(−1)

There are three images below- One with the learning rate too high, one with it too low, and the other
just right.

Rather than a strict convergence to the optimum, we see what is called convergence to a noise ball,
meaning that with a constant step size, we’ll keep bouncing around the optimum value.

We’ll experiment a little with the parameters to get a better understanding of what’s happening.
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9.8.1 Computer Examples

Suppose we have some data representing the square footage of certain houses, together with their prices.
Suppose we want to construct a function that will predict the house price based on the square footage.

Such a situation might call for a “line of best fit”, but in general, we’re given a model function, y = mx+b,
with two training parameters. We define our error in the usual way as the sum of squares error.

In the first script, HousingPrices.m, we load the data in, we scale the footage values and the price
values so that the have zero mean and unit standard deviation, and then we find the best m, b using gradient
descent with a fixed step size.

In the second script, HousingPricesAdaptedStep.m, we adjust the step size using the backtracking line
search, and we find extremely fast convergence.

In the third script, HousingPricesSGD.m, we adjust our training parameters using the stochastic gradient
descent. What’s very interesting here is that the error does approach some local minimum value (jumps
around a bit), but the gradient does NOT converge to zero- it actually bounces around quite a bit.

Why would we use Stochastic Gradient Descent? When we do larger problems with many, many data
points, it would take a very long time to train if we had to sum through every single data point.

An adjustable parameter

There is another alternative to the Stochastic Gradient Descent algorithm itself that you may have thought
of. In the original gradient descent, we used all the data. In the SGD, we use only one data point. How
about if we use a small sample of data points? That is in fact the approach called Batch SGD. Of course,
then there is a question of how many points should be in the batch- The answer is most likely problem
dependent. How much time are you willing to put into estimating the gradient? The choices we can make
run from computing the gradient exactly but very slowly with all the data, to going extremely quickly but
with lots of error in the gradient using a single data point.

Once again we’re reminded that running these algorithms is more of an art than a science. With practice,
you get a sense for what values work and which don’t.

9.9 Homework

1. Suppse we have four points below, and we’re building a line of best fit: y = mx+ b.

x −1 1 2 3
t 0 1 3 2

(a) Write down the sum of squares error function, and the partial derivatives of the error with respect
to m and b.

(b) Use one step of gradient descent if we begin at the point m = 0, b = −1 with step size 0.1. Use
a calculator, but not a computer- The point of this exercise is for you to step through all the
calculations.

(c) Use one step of stochastic gradient descent if we begin at m = 0, b = −1 and use data point 3
(same step size, 0.1) for the gradient estimate.

2. There is actual housing data from Walla Walla in the file HousingWW.m. This is a script file, so
to load the data, you would just type the name of the file (in your script or on the command line):
HousingWW. Re-run the scripts with this new data.

(a) How many steps does it take each algorithm to converge or stop?

(b) What is the final error value (using any of the scripts)

(c) Given your m, b, predict the price for a house with 2,000 square feet.
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Chapter 10

k-Nearest Neighbors

We might observe that we use experience in order to predict outcomes. It is the accumulation of experiences
that give us the ability to become more nuanced in those predictions, and if a given situation is completely
outisde of that set of accumulated experience, then we will probably not be able to anticipate what will
happen.

It is this basic observation that lies at the heart of the nearest neighbor classifier. Let’s set this up
properly: Suppose we have p points in IRn (stored in a matrix X) that have class labels stored in a target
vector t (so t might be p × 1). The problem is this: Given a new point x̂, I want to determine the most
appropriate class label for this point. The nearest neighbor rule is the following:

Nearest Neighbor Rule

Given data in matrix X and class labels in t, the class label for a new point x̂ is given by the class
label of the point in X to which it is closest. That is, if i∗ is the index of the point in X closest to x̂:

i∗ = min
i
‖X(:, i)− x̂‖

then the target label for the new point is ti.

As a side note, this is a supervised learning task, as opposed to data clustering that we looked at
earlier, which was unsupervised because we did not have the class label.

The nearest neighbor rule is about as straightforward a rule as they come. Think about what the set of
boundaries between classes would look like, and you might visualize something we’ve seen before:
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Yes- the decision boundaries for the nearest neighbor rule forms Voronoi cells, with the data points from
X at each center.

10.0.1 Implementing the Nearest Neighbor Rule

The main computation will be the set of distances from the new point x̂ to every column of the matrix X.
In fact, we really don’t need the actual distances, rather the distances squared would work just as well and
would save us from having to do the extra square root.

Rather than creating a loop through the data, it is usually easier and faster to “vectorize” this compu-
tation. In Matlab, this would look like:

temp=X-hat_x; % Subtract hat_x from each column of X.

distances=sum( temp.*temp ); % Sum (down) the square of temp to get a row

% of squared distances

[vals,idx]=sort(distances); % Sort the distances in ascending order

ClassLabel=t(idx(1)); % The desired label is the label whose index

% is first in idx, found in target vector t.

In Python, we’ll have something similar.

import numpy as np

temp=X-hat_x

distances=np.sum(np.square(temp),axis=0)

idx=np.argsort(distances)

ClassLabel=t[idx[0]]

Example

To the right is an example. We have three points in
the plane for the matrix x. Two have class label A
and one has class label B. There is an unknown point
also marked. Which class label should that have? It
would seem reasonable to assign that to class A. But
wait!

Here is my actual data:

X =

[
0.1 0.1 0.2

1000 2000 1500

]
t = [ A A B ]

x̂ =

[
0.11
1500

]
distances =[250, 000 250, 000 0.008]

We see that the image is very misleading- the scales on the x, y axes are completely different, so that the
distance on the x axis is almost completely swamped out by the scale on the y.

This can happen frequently with “mis-scaled” data, especially when we’re relying on the Euclidean
distance metric. We have two ways to fix this, if it is an issue:

• Rescale the data: The typical fix is to mean subtract and divide by the standard deviation in the x
and y coordinates independently, so that both have approximately the same scale.
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• Change the metric: For example, we can weight the distances:

‖α1(∆x)2 + α2(∆y)2‖

where α1, α2 are the weights- we could make α1 much larger than α2 in order to correct the imbalanced
scale.

The main point here: Pay attention to your data. Be sure you know what kinds of scales you’re working
with, and re-scale the data if necessary.

10.0.2 K-nearest Neighbor Classifiers

In the k−nearest neighbors algorithm, we look at the k−nearest points in X to the new point x̂. To decide
on a class label, it is common to use “majority rule” voting, so for example, if we had 5 nearest neighbors,
and 3 of them were class A and 2 were class B, we would choose class B. The only change to our previous
code is to count the class labels and choose the one with the max.

You might also want to allow the closest points to have more weight in the calculation than points farther
away. In that case, instead of adding a count of 1 for each neighbor in a certain class, you would add 1/d.
Then the class with the higher score wins.

Extreme Cases

If k = 1, the function will simply find the data point it is closest to, and give that output. In particular, if we
classify data used in the model, then we would have 100% classification, as the model will have memorized the
data. If k is large enough to always capture all the data, then the classification will be constant (whichever
class is most prominent in the training data).

Presumably, there is an ideal number of nearest neighbors that we should use- but how should that
number be selected? One method- Cross Validation will be described shortly. First, given a classifier, how
accurate is it?

Is a smaller k better than a large k?

For small values of k, we run the risk of modeling “noise” in the data. The boundaries between classes can
be unstable and complicated (but “accurate” because we are overfitting). Large values of k will smooth out
the borders between classes making it easier for us to generalize. See the image below, where the image to
the left is with k = 1 (very accurate, but does not generalize well) and the image to the right is k = 20 (less
accurate, but good generalization).
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I’ve seen some rules of thumb that say we should use about
√
N as the value of k, where N is the number

of sample points, but depending on the problem, this could be unreasonably large or small, so this tends to
be problem dependent. Later in this section, we’ll see how to use a technique (cross validation) to help us
determine a good value of k.

10.1 Accuracy: Testing, Training and Validation Sets

As we mentioned in the previous section, it is possible to get 100% accuracy if we choose k = 1 and only look
at data that was used to build the model. So if we’re always 100% accurate, then there’s really no point in
analyzing why- the data has been memorized. In this case, we would say that the model has been overfit-
That is, we’re modeling everything about the data and not trying to generalize.

On the other extreme where every data point is included in the neighbors, then the prediction is constant-
this is an extreme case of underfitting, where we only have the general trend modeled.

We try to fix the overfitting, underfitting issue by considering the following: The “error” needs to be
measured using data that was NOT used for training. Before training, we need to reserve some data for that
purpose.

Some definitions before continuing:

• The training set is the set of data we’ve reserved for building the model.

• The validation set is the set of data we’ve reserved for checking model parameters (if needed).

• The testing set is reserved to measure the error at the very end of training. It must be data that
the model has not used for training or testing. The golden rule of machine learning is to never use
training data for measuring accuracy!

Now we use our training set to build the model parameters. Then you use the validation set to measure
the error- We hope that the validation set will tell us how well our model is generalizing to “new” data. As
our parameters are being tuned (for example, the number of neighbors), we will expect that the error using
validation data will decrease until we’ve reached some optimal value, at which point the error will begin to
increase again. It only now that the third set, the testing set, can be used to measure the “true” error.

Now that we’ve described how to use the three data sets, let’s talk about some practicalities. We will
probably not have enough data to keep producing new training sets as we tune the model parameters. If
you’re a car manufacturer, for example, those data points may be costing you tens of thousands of dollars
each. We’ll need a different idea for model tuning- That is Cross Validation.

10.1.1 k-fold Cross Validation for Tuning Your Model

To begin with, suppose we have split our data into a training set and a test set. A common percentage
might be 70-30, although this is problem dependent.

Is there anything wrong with doing the following?

• Use the training set with some set of model parameters (like the number of neighbors),

• Determine the error using the test set.

• Repeat this process while changing the model parameters over some finite set of values (but not
changing the training or test set).

The biggest problem with this method is that we used our test set to determine the model parameters,
so now we have no reserved data that we can use to measure the “true” error. Secondly, since we’re choosing
the data split randomly, it might happen that we have chosen a bad (nonrepresentative) sample- In that
case, we have no remedy while we’re determining the parameters.

120



What can be done instead? In k−fold cross validation,
we’ll split the training set into k distinct sets (called
folds), and we’ll be training k times. Each time we
train, we will designate one of the k sets to be the
validation set, and the other k− 1 sets will be used to
train the model. Afterwards, we determine the error
as the average over the k training sessions. As an
example of how to split the data, here is a “cartoon”
showing 5−fold cross validation (as a general rule of
thumb, researchers tend to use k = 5 and k = 10 if
they have enough data).

As an example for using CV for determining the best number of nearest neighbors, we first split the data
into training and testing sets, and reserve the test set. We now split the training data into k folds, and with
some fixed value of k (nearest neighbors), we run the k training sessions and get the error estimate. Now
we increase k by one and repeat. And repeat. And repeat- At the end, we’ll choose the number of nearest
neighbors that gave us the best average error. Once that is done, we will re-train the algorithm with that
number of neighbors, and use the reserved test set for the final error computation.

We will mention here as well- this kind of process can also tell you what kind of algorithm to run on your
data. You may be selecting from several kinds of classifiers, for example. Running k−fold cross validation
is a good way of measuring the error from each classifier, then you would select the algorithm with the best
average error. Finally, you would train the classifier on the training set and use your reserved test set for
the error computation.

We won’t go too much further into cross validation right now, but Python does have versions of cross val-
idation available in GridSearchCV and RandomizedSearchCV to determine the best values of the designated
parameters. For more information, see the scikit-learn documentation.

10.2 The Confusion Matrix

In the previous section, we learned how to get a good measure of our error. In classification problems, we
typically want to see more than the overall average error. Rather, it can be very useful to see what kinds of
errors are being made. For example, if we are misclassifying label A, is it because we’re labeling it only as
B, or sometimes C as well?

To answer these questions, we set up an array called a confusion matrix. Here’s a small example,
where we have some algorithm classifying on object as a dog, cat, or rabbit.
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Predicted classes are along the vertical axis of the matrix, actual classes are along the horizontal, although
this “rule” tends to not be followed very strictly, so do pay attention to your axis labels.

Along the diagonal entries are where the predicted result is equal to the actual result (which are the
correct classifications), and the off-diagonal elements represent classification error. For example, our set had
11 objects that were dogs but classified as cats.

Although missing from our example, some confusion matrices will also provide the row and column sums,
which can be helpful. To find the total number of objects being classified, we sum all the cells together.
In this example, we have 133 objects being classified, and 74 of those were classified correctly, giving us an
overall accuracy of 57%. We can also look at some subscores, for example, looking only at dogs, we had 38
total (sum down the column), and we correctly classified 23, giving an accuracy of about 61%. For cats, we
had 51 objects total and classified 29 correctly, giving 57% accuracy (and so on).

Now that we have some ideas about how to visualize our error, we have one more topic to cover.

10.2.1 K-nearest Neighbor Regression

So far we have discussed only the clustering (or classification) problem. As it turns out, the algorithm can,
with very few changes, be made to model a function as well.

In this case, our data points are still in X, but the function output is in the target vector t. To find the
function output for a new point x̂, we would still find the k−nearest neighbors in X, determine their output
values from t, and combine these values in some way to produce our estimate for x̂. There are multiple ways
of doing this- for example, the new output is the average of the k given outputs.

The problem with this is it gives equal weight to points very close to x̂ and points that may be far away
(even though it is within the 5 closest points). Therefore, we might provide a weighted average. Since the
distances are all non-negative, we can form weights αi for the k points as the following, where di is the
distance to the ith point:

αi =
1/di∑k

j=1(1/dj)

You’ll notice that 0 ≤ αi ≤ 1 for each i, and
∑k
i=1 αi = 1, like a set of probabilities. Then the output of

function at x̂ is given by:

f(x̂) =

k∑
i=1

αiti

This technique could be extended to functions of more than one variable. For example, if the known target
values are vectors t1, . . . , tp, then we can compute the output just as before:

f(x̂) =

k∑
i=1

αiti

This kind of a linear combination (with non-negative weights that sum to 1) has a special name- This is
called a convex combination of the vectors t1, . . . , tp (where the weights for the targets outside of k points
are set to zero).

10.2.2 Example

Here is an example of the output of the one-dimensional regression. We would like to predict Bone Mineral
Density (BMD) based on the age of a patient. The dots in the image below represent the raw data. In the
first graph below, we show the result of using an increasing number of nearest neighbors (with a straight
average output). It is clear that the larger the number of neighbors, the smoother the function becomes.
With k = 1 (the red curve) we are jumping all over the graph, but the blue curve (20 nearest neighbors), we
have smoothed the function by quite a bit.
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Further, below we show the difference in using the standard average as the output versus the weighted
average (weighted as in the text). The weighted average in this example actually shows a bit more variation.

We’ll take a look at this example more closely in the homework exercises.

10.3 Conclusions

In this section, we discussed the k−nearest neighbor classifier and regression algorithm. But just as impor-
tantly, we’re starting to talk about data. In particular:

1. Given a novel data set, be sure and examine it. You’re looking for scaling issues, but there could be
missing data or duplicate data as well. We’ll be talking about preprocessing more later- In today’s
work, we saw the importance of scaling the variables.

2. When we engage in model building, it is critically important that we reserve some data for estimation
of the true model error, so we initially divide the data (both input and target) into a training set and
a test set. A rule of thumb is approximately 70-30.

3. The training set can then be further subdivided, into training and validation sets. This can be done
using a single partition, or we can prep k−fold cross validation and separate into k folds.

4. The output of the classifier can be visualized using a confusion matrix.
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10.4 Homework

1. It has been said that k−nearest neighbors should not be used for high dimensional input- Let’s see
why. Suppose our data is in the unit hypercube,

0 ≤ xi ≤ 1, i = 1, 2, 3, . . . , n

So in dimension 1, we’re on the interval [0, 1]. In dimension two, we have a square [0, 1] × [0, 1] or
[0.1]2. In dimension 3, the domain is [0, 1]3 and so on. Further, let’s set the number of data points in
each problem to 1000.

• In dimension 1, find the number of points so that 0 ≤ x ≤ 1/2.

• In dimension 2, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2.

• In dimension 3, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2, 3.

• In dimension 4, find the number of x such that 0 ≤ xi ≤ 1/2 for i = 1, 2, 3 and 4.

As an example in Matlab for two dimensions, we would have:

N=1000;

dim=2;

X=rand(1000,dim); %Data

count=0; %keep track of the data inside nghbrhd

for j=1:N

if X(j,1)<0.5 && X(j,2)<0.5

count=count+1;

end

end

fprintf(’Count is %d\n’,count);

What should we find? As the dimension increases, the data becomes sparse. Notice that initially our
neighborhood took half of the data, but as we increase the input dimensions to just 4, that number
drops signicantly. Can you see why geometrically?

This phenomenon is known as the curse of dimensionality: As we increase the number of input
dimensions, the problem becomes exponentially more difficult.
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Chapter 11

Linear Neural Networks

In this chapter, we introduce the concept of the linear neural network. As we will see, a neural network is
a biologically inspired algorithm that allows us to build a functional representation from data. In statistical
terms, a neural network generally represents nonlinear regression. In this chapter, however, we start with a
linear network and examine its properties and shortcomings.

11.1 A Model of Learning

D.O. Hebb (1904-1985) was a physiological psychologist at McGill University. In Hebb’s view, learning could
be described physiologically: There is some physical change in the nervous system to accommodate learning,
and that change is summarized by what we now call Hebb’s postulate (from his 1949 book):

When an axon of cell A is near enough to excite a cell B and repeatedly takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.

As with many named theorems and postulates, this was not an idea that was completely new, but he does
give the postulate in a form that can be used as a basis for machine learning. Here are some questions you
might think about:

1. Hebb’s postulate describes a strengthing or weakening of connections. How is this biologically or
chemically done? What exactly is that “physical change”?

2. There is also near instantaneous learning- Circumstances that are so emotionally intense, that we do
not require repeated exposure. But perhaps internally repeating the exerience is enough.

3. The postulate does not give any consideration to feedback. If the action causes pain, will the neuron
connections still be strengthened? How does emotion in general mitigate or assist in these construc-
tions? Again, we can’t give authoritative answers to these questions.

We’ll leave these questions for you to think about, and move into something we can answer. How do you
mathematically model Hebb’s postulate?

11.2 Linear Neural Nets

We will go into the formal details later for defining neural nets, but this is a good place to get a feel for what
they’re all about.

Let us first build a simple model for a neuron. A neuron has three body parts- The dendrites, which
carry information to the cell body, the cell body, and the axon, which carries information away from the cell
body.
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Multiple signals come in to the cell body from the dendrites. Mathematically, we will assume they all
arrive at the same time, and the action of the dendrites (or the arrival site of the cell body) is that each signal
is changed by the physiology of the cell. That is, if xi is information along dendrite i, arrival at the cell body
changes it to wixi, where wi is some real value. Next, the cell body collates this information by summing
these signals together. So far, then, this action is simply a dot product of the vector w (the weights) to the
signal x. An additional value is added to the result, which we can think of as the resting state of the cell (or
in statistical terms, the bias). In Figure 11.1, we graphically depict the flow of information from the input
layer to the output layer.
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Figure 11.1: The Linear Node. Information travels from left to right along the edges.

Some vocabulary that we’ll use:

• x1, . . . , xn are presented to the “input layer”. Some researchers call this an actual layer, some do not
(which makes some counts of the network different).

• The w’s are called the “weights”, and we will also denote the edge by the same notation. When a
signal travels along an edge, the result is that the signal is multiplied by the weight.

• At node L, the sum of the incoming signals is taken, and added to a value, b. We think of b as the
“resting state” of the cell, which is also called the bias term.

We see that mathematically, this single node of a linear network is an affine function from IRn to IR:

x 7→ (w11, w12, . . . , w1n)


x1

x2

...
xn

+ b = w11x1 + w12x2 + . . .+ w1nxn + b = w · x+ b

If we have m neurons and x is a vector in IRn, then W is a m × n matrix, and each row corresponds to a
signal neuron’s weights (that is, Wij refers to the weight taking xj to neuron i). Graphically, we see this in
Figure 11.2. The full mapping is now formally an affine map from IRn to IRm (affine because we’re adding
the bias terms in b).

x→Wx+ b

As we know, problems that are linear are usually easier to work with, so we can use a “trick” from
computer graphics to convert our affine map to a linear map by going up one dimension. First an example
of how this will be done:
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Figure 11.2: The Linear Neural Network is an affine mapping from IRn to IRm

Example (Convert Affine to Linear)

Suppose that we have the 2× 2 affine problem:(
a1 a2

a3 a4

)(
x1

x2

)
+

(
b1
b2

)
=

(
y1

y2

)
If we put the vector b as the last column of the matrix, we just need to add a dimension to the vector x
by putting a 1 in that position. That is, you should verify that our affine map is equivalent to the following
linear map: (

a1 a2 b1
a3 a4 b2

) x1

x2

1

 =

(
y1

y2

)

As a summary, we have the following conversion: Given the affine problem

Ax+ b = y

define Â = [A b] and x̂ = [x, 1]T . Then the affine map is equivalent to the linear map

Âx̂ = y.

11.3 Training a Network

So far, we’ve seen that a linear neural network is modeled by Wx+b. In this case, we would call the weights
and biases the model parameters. We now need to determine the model parameters given some data, and
that is what is called training.

To set up the problem, we are given p data pairs (where t is for known “targets”).

(x(i), t(i))

where our goal is to determine the weights W and biases b so that

Wx + b = y ≈ t

There are many ways one may perform the training, but there is one way of classification that is helpful:
On-line or Batch.
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• On-line training (or on-line learning) is an adaptive approach where the weights and biases are modified
after looking at a single data pair (x(i), t(i)). A network with this kind of training is called an Adaline
net (for “Adaptive Linear”).

• Batch training is a one-step training method where the weights and biases are determined after the
entire data set has been analyzed.

As it turns out, both training processes are designed to minimize an error function, and the most common
way to construct an error function is to take the sum of squares error (SSE). If we assume that we have p
data pairs, then the sum of squares error is defined as the following.

E(W, b) =

p∑
j=1

‖t(j) − y(j)‖2 =

p∑
j=1

‖t(j) − (Wx(j) − b)‖2

Some formulations of E will multiply it by 1/2 so the derivative doesn’t have a “2” in it, or will take the
average error (so multiply by 1/p). If we multiply E by a constant, the values of W and b that give us the
optimal value will be the same, so we may do so if it makes our computations easier.

In the next section, we’ll talk about online training, and later, we’ll discuss batch training.

11.4 Hebbian Learning (On-line training)

We’ll recall that the linear network inputs a pattern, x ∈ IRn, and it outputs a pattern, y ∈ IRm (remember
that in our notation, y represents the output of the network, and t is our known target data). In terms of
the weights, matrix W is m× n, and so individually,

Wij connects the jth value of the input to the ith value of the output.

Thus we might take the following as Hebb’s Rule: The change in the weight connecting the jth input to
the ith cell is given by:

∆Wij = αyixj

where α is called the learning rate.

If both xj and yi match in sign, then Wij becomes larger, and if there is a mismatch in sign, Wij gets
smaller. This is the unsupervised Hebbian rule. Let’s take a closer look at this using some linear algebra.
With x ∈ IRn and y ∈ IRm, then the outer produce yxT produces an m×n matrix (same dimensions as W ):

y1

y2

...
ym

 [x1, x2, . . . , xn] =


y1x1 y1x2 . . . y1xn
y2x1 y2x2 . . . y2xn

...
...

ymx1 ymx2 . . . ymxn


You should verify that in this case, we can compactly write Hebb’s rule as:

Wnew = Wold + αyxT

and that this change is valid for a single x,y stimulus-response pair.

There are some difficulties with unsupervised Hebbian learning- in particular, if α stays fixed, then the
update rule will “blow up” on us- We need to incorporate the targets.
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11.4.1 Widrow-Hoff Learning

We want to define the update rule in such a way as to go to zero as the output y gets closer to the target t.
Here is one way to accomplish this, and it is called the Widrow-Hoff learning rule1:

∆Wij = α(tj − yj)xi

If we put this in matrix form, the learning rule becomes:

Wnew = Wold + α (t− y) xT (11.1)

where (x, t) is a desired input-output relation, and y = Wx + b, and the update rule for the bias vector is
similar:

bnew = bold + α (t− y) (11.2)

11.4.2 Derivation of Widrow-Hoff (Exercises)

In this series of exercises, you’ll see that the Widrow-Hoff update is really an approximation to gradient
descent on our error function - in fact, we’ve seen it in stochastic gradient descent. First, we’ll look at
one-dimensional output, and then extend that to multidimensional output.

For notation, let k = 1, 2, . . . , p index the data. Let (x(k), t(k)) denote the input, target pairs for the
linear network, and the output of the network is y(k) = wTx(k) + b, and E is the SSE as defined earlier.

1. Find an expression for ∂E/∂wj (be sure to substitute the function in for y), where E is our sum of
squares error.

2. Find an expression for ∂E/∂b.

3. Using the previous two answers, what would our update rule look like if we performed gradient descent
on the error function?

4. Instead of using the full error function, we will estimate the full error by using only one data point.
That is, for the kth data point,

E(w, b) ≈ (t(k) − y(k))2

Show that using the approximation gives us the Widrow-Hoff rule, where α is a constant.

wnew = wold + α(tk − yk)x(k) and bnew = bold + α(tk − yk).

5. Show that the multidimensional extension leads us to Equation 11.1 and 11.2.

11.4.3 Looking at the Learning Rate

In order to optimize the learning rate, it is possible to show that, if matrix H is the Hessian of our error
function, then as long as α is bounded as shown:

0 < α <
1

λmax

then the Widrow-Hoff algorithm will converge. For us, we can show that the Hessian on the full error will
be XXT , if X is n× p (so a scaled covariance matrix). Since we’re approximating the error with the single
vector x, then:

1. As an exercise, show that ‖x‖2 is the non-zero eigenvalue for the rank 1 matrix xxT .

2. Matlab uses the following estimate for the maximum learning rate:

α =
0.9999

max(eig(xxT ))
=

0.9999

‖x‖2
1Also goes by the names Least Mean Squares rule, and the delta rule.
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11.4.4 Implementation Details

We’ll provide Matlab/Python implementations separately, but let’s consider the details using pseudo-code.
In our code, we’ll assume that the data is in matrix X, the desired targets are in matrix T , and the

training parameters are weight matrix W and vector b. We’ll assume that X is n× p, and that sets up the
dimensions for the other matrices and vectors:

X is n× p T is m× p W is m× n b is m× 1

• Randomly initialize W and b (randn is better than rand for this).

• Loop for i from 1 to the number of epochs (an epoch is one pass through the data)

– Randomly permute the training data.

– For j from 1 to the number of points p:

∗ Compute the output y using the jth input.

∗ Compute the error: t− y for the jth input.

∗ Update the weights: Wnew = Wold + α(t− y)xT

∗ Update the b: bnew = bold + α(t− y).

∗ End of j loop.

– Compute the SSE for this epoch:

∗ temp= T − (WX + b).

∗ SSE= sum(temp. ∗ temp).

11.4.5 Example: Associative Memory

Here we will reproduce an experiment by Widrow and Hoff2 who built an actual machine to do this (we’ll
do a computer simulation).

We’ll have three letters as input, T , G and F . We’ll
associate these letters to the numbers −60, 0, 60 re-
spectively. We want our network to perform the asso-
ciation using the Widrow-Hoff learning rule.
The letters will be defined by 4× 4 arrays of numbers,
where 1 corresponds to the color black, and −1 corre-
sponds to the color white. In this example, we’ll have
two samples of each letter, as shown in the figure to
the right.

Implementation and problem specification:

• Dimensions:

X is 16× 6, T is 1× 6, W is 1× 16, b is a scalar

• We’ll use an α = 0.03.

• We’ll take 60 passes through the data (60 training epochs).

2See “Adaptive Switching Circuits” by B. Widrow and M.E. Hoff, in 1960 IRE WESCON Convention Record, New York:
IRE, Part 4, p. 96-104. You’ll find reprints on the internet.
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The plot of the error is shown in the figure to the
right. The horizontal axis counts the number of passes
through the data, and the vertical axis gives the sum
of the squared errors. Since we only had 6 points, the
error graph (taken on the full set) is just to show that
the training is succeeding, it does not represent the
error of the classifier.

11.5 One step training

In this section, we’ll assume that all of the data is available to us at the beginning of training. Further,
rather than affine form (Wx+ b), we’ll convert the output to the linear form by creating Ŵ and X̂. If you’ll
recall, we start with:

W
[
x(1), x(2), . . . , x(p)

]
+ [b, b, . . . , b] =

[
y(1), y(2), . . . , y(p)

]
,

and then we transform this into a linear problem by appending b to the last column of W and we put a row
of 1’s as the bottom row in the data:

Ŵ = [W b ], X̂ =

[
x(1) x(2) . . . x(p)

1 1 1

]
Now the output of the linear network is simply Y = Ŵ X̂, and we can solve the system of equations for Ŵ
directly

Ŵ X̂ = T

In particular, we can use the pseudo-inverse from the reduced SVD of X̂:

X̂ = UΣV T ⇒ Ŵ = TV Σ−1UT

If X̂ has rank k, be sure you can identify the dimensions of all the matrices above.

11.6 Small Batch Training

Between training using a single point at a time versus using all the data, we might update the parameters
after gathering some small number of data points together. One advantage to this is that the direction of
gradient descent will be better established than using a single point.

Furthermore, rather than completing training as with one-step learning, regular online learning keeps the
network flexible and adaptable to new changes in the data.

In small batch training, the algorithm proceeds as with the single point training, except t, y, and x are
replaced by their averages taken over the small group. Further, the value of α can be approximated by

α ≈ 0.99

max(eig(XXT ))

where X in this context is the small group of points x collected in a temporary matrix X.
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11.7 Time Series and Linear Networks

In this section, we’ll see that linear neural networks can play a role in signal processing. In that context,
we’re thinking of an incoming signal parameterized by t and sampled digitally to create a sequence of points.
We’ll start there.

Definitions

A time series is a sequence of real numbers. We denote a time series in the usual way:

S = {x(1), x(2), x(3), . . . , x(t), . . .}

A tapped delay line with k taps is constructed from a time series:

x̂1 =


x(1)
x(2)
...
x(k)

 , x̂2 =


x(2)
x(3)
...
x(k + 1)

 , x̂3 =


x(3)
x(4)
...
x(k + 2)

 , . . .

This is also called a lagged vector (lag k). We would say that the time series has been embedded in
IRk.

Consider the Matlab code that would embed the data into IR5.

p=length(S);

X=zeros(k,p-k);

for j=1:k

X(j,:)=S(j:p-(k+1-j));

end

T=S(k+1:p);

This code is the basis for the function lagX.m on our class website. The function creates our domain vectors
as the columns of matrix X, and the set of targets (in this case, 1 dimensional) in vector T . From here, we
can apply the neural network and train it. That is, our goal is to build a time series predictor. We’re going
to predict the value of x6 based on x1, x2, x3, x4, x5. Then we predict the value of x7 based on x2 through
x6, and so on. Actually, this kind of a function is called a filter.
Definition: A filter with k−taps is a function on the time series so that:

xi = f(xi−1, xi−2, . . . , xi−k)

In particular, a linear filter will have the form:

wTx+ b = xi

where w are the weights, b is the bias, and x = (xi−1, xi−2, . . . , xi−k)T .

Side Remark: In signals processing dialect, the linear filter above is called a Finite Impulse Response
(FIR) filter

11.7.1 Example: Adapting to a Changing Signal

In this example, we build a time series from two time series- the signal is:

S(t) =

{
sin(4πt) if 0 ≤ t < 4
sin(8πt) if 4 ≤ t ≤ 6
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The idea is that the online training will find the weights and biases for the first part of the signal quite
rapidly. The hope is that, when the signal changes, the Widrow-Hoff algorithm will allow the function to
rapidly adapt to the new signal (and it does!).

Below is the original signal.

The value of α in this example was fixed. We’re doing that so we can see the result of changing the
learning rate. For this example, we found that the optimal fixed value was approximately 0.153, but you
might change that in the script for yourself. Below is shown the output error as a function of the time index.
Indeed, we see that the error rapidly goes to zero, but then pops up and adapts as the signal changes.

Application: Noise removal

This idea is presented by Matlab. I haven’t tried it myself yet, but it would be interesting to see what kinds
of results you would get.

• Background: There is a signal that we would like to have as pure as possible, but there is some noise
contaminating it. For example, a pilot’s voice may be contaminated by engine noise. We would like
to remove the noise using a linear neural network. We assume that the noise source is available for
sampling, but the noise contamination is an unknown function of the noise source.

• GOAL: Filter out the noise, given only access to the noise source.

• Idea for the solution:

Suppose that the noise source is input (using time delays) to a linear filter. What can the linear
network do? It can only form linear combinations of its past values, and therefore can only estimate
signals that are (at least) correlated to the noise source. The pilot’s voice (or signal of interest) should
NOT be correlated to the noise.

If we ask a linear network to model the noise PLUS the pilot’s voice, the linear network will only be
capable of modeling the noise.
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This gives us an easily implemented algorithm:

Let vk be the main signal (or voice) sampled at time k. Let nk be the sample of the noise source at
time k. The contaminated signal is then: vk + f(nk), where f is a (unknown) model of how the noise
is transformed.

We will design the linear network so that:

– INPUT: nk, nk−1, . . . , nk−(m−1) (m lags)

– DESIRED OUTPUT: vk + f(nk) = ck

– ACTUAL NETWORK OUTPUT: ak

Algorithm: At time k, input the lagged vector, and compute ak. The error is ak − ck. Use the
Widrow-Hoff learning rule to update the weights and bias.

Homework

The homework will consist of a computer lab where you’ll practice training the linear neural network. Since
the specific implementation will depend on the coding language used, we’ll keep that as a separate document.
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Chapter 12

Radial Basis Functions

12.1 Introduction

The neural network has been so popular because of it is actually a universal function approximator.
That is, for any given function (expressed partially as data), there is a neural network that will approximate
it. This extraordinary property means that the applications of neural networks are only bounded by our
ability to compute and train them.

We’re going to start our discussion of the more general neural nets by looking at one class in particular-
The Radial Basis Functions (or RBFs). While they had been around for a long time, it was an important
work by Dave Broomhead and David Lowe, “Multivariable Functional Interpolation and Adaptive Networks”
published in 1988 that connected the RBF to the neural net.

Further, RBFs were initially used (Powell, late 1970s) to perform interpolation rather than regression-
That means that they were used to find an exact fit to a high dimensional function rather than looking for a
generalization (in the regression problem). We know from that, that it is possible to drive the training error
to zero (which would typically be overfitting), and so we need to keep that in mind when we’re training.

We will see that the RBF network has some very attractive features: Training can be split up and
computed in layers, perhaps making it more tractable, and they are fast and intuitive as well.

12.2 Radial Basis Functions

The architecture of a radial basis function consists of the following pieces, which we’ll go through more
carefully in a moment:

• A set of centers, {c1, c2, . . . , ck}. The centers are in the same space as the input data, {x1,x2, . . . ,xp},
and can in fact be selected from the input data.

• One or more transfer functions, φ (a map from IR to IR). Common choices will be given shortly.

The action of the RBF network is then defined as follows (given in layers): The first mapping is from the
input space, IRn to IRk (where k is the number of centers). At this point, the transfer function φ is applied
to each element, and that is followed by an affine mapping to the output layer, IRm.

x→


‖x− c1‖
‖x− c2‖

...
‖x− ck‖

→ φ



‖x− c1‖
‖x− c2‖

...
‖x− ck‖


→W


φ(‖x− c1‖)
φ(‖x− c2‖)

...
φ(‖x− ck‖)

+ b =


y1

y2

...
ym

 (12.1)

Before going further, we might just make a note of where the name “radial basis function” comes from.
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Definition: A radial function is any function of the form φ(x) = φ(‖x‖), so that φ acts on a vector in IRn,
but only through the norm so that φ : [0,∞)→ IR.

It is possible to then take some set of radial functions and then have a basis for some function space.
We’re going to use the radial basis functions for function approximation however.

Definition: The Transfer Function and Matrix Let φ : IR+ → IR be chosen from the list below.

φ(r, σ) = exp

(
−r2

σ2

)
Gaussian

φ(r) = r3 Cubic

φ(r) = r2 log(r) Thin Plate Spline

φ(r) =
1

r + 1
Cauchy

φ(r, β) =
√
r2 + β Multiquadric

φ(r, β) =
1√
r2 + β

Inverse Multiquadric

φ(r) = r Identity

The reader may note that some transfer functions have extra parameters- Like the Gaussian, and Multi-
quadrics. Also, we will assume that φ, when applied to a vector or a matrix, will be defined element-wise.

There are other transfer functions one can choose. For a broader definition of transfer functions, see
Micchelli [30]. We will examine the effects of the transfer function on the radial approximation shortly, but
we focus on a few of them. Matlab, for example, uses only a Gaussian transfer function, which may have
some undesired consequences (we’ll see in the exercises).

12.2.1 The RBF as a Neural Network

The RBF as a neural network is shown to the right.
The input layer has as many nodes as input dimen-
sions. The middle layer has k nodes, one for each
center ck. The processing at the middle layer is to
first compute the distance from the input vector to
the corresponding center, then apply φ. The result-
ing scalar value is passed along to the output layer, y.
The last layer is linear in that we will be taking linear
combinations of the values of the middle layer.

Training the RBF can be split into two steps. The first step is to locate the centers and to determine the
transfer function (and its parameters). The second step is to build the design matrix Φ and solve the linear
system of equations for the weights and biases, W and b.

It is possible for us to include center locations and the transfer function parameters in the error function.
There are lots of journal articles about how this might be done, but none have turned out to be that
popular. This is probably due to the fact that separating centers and transfer function parameters out
makes the problem fast and linear- this is the primary reason one would use RBFs instead of other methods.
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12.2.2 Determining the Centers and transfer function

Center Selection

We will primarily use one of the following techniques to select the centers “offline” (meaning this can be and
is usually done independently from finding the weights and biases).

• k−means clustering (or any clustering that returns cluster centers).

Data clustering is popular, but what we’re really doing is spreading the clusters around the input data.
The desired targets are typically not taken into account.

• Random center selection: This seems like it would be a terrible thing to do since it guarantees a
suboptimal solution, but for smaller data sets, this does actually work pretty well.

• Orthogonal Least Squares: This is Matlab’s default algorithm, and we’ll discuss this later in this
section.

• Center placement as part of the optimization problem. This is possible, but as we noted before,
for larger problems this might become an unreasonable thing to do (in practice). We won’t do this,
although it is interesting to see where the centers end up.

Notes on the transfer function

Some transfer functions do not require us to provide values for extra parameters. The cubic function can
be an attractive option that way. However, the Gaussian is probably the most popular choice for transfer
function, and so it is good to have some way to set the spread. It is possible to always set the spread to 1
by re-scaling the data appropriately, but there may be reasons not to do that.

When looking at k−means, some recommend using the distance between centers as a guide for setting
the spread. If we define the spread as spr, where

φ(r) = e−spr r
2

then, if M is the maximum distance between our k centers,

spr =
M√
2k
.

Matlab’s formula for calculating spr is, given the desired spread s (default is s = 1) then

spr =

√
− ln(1/2)

s
=

√
ln(2)

s

At this point, we’ll assume that the location, number of centers, and the transfer function with its
parameters has been chosen. We continue on to train the net.

12.2.3 Training the RBF

As usual, we should start by examining the data we’re given, scale it if necessary, and split it into training
and testing sets. We don’t necessarily require k-fold cross validation for the remainder, although we could
use it to try to get a better estimate of the error (of course, that requires extra data that we may not have).
Given all that, let’s assume that we have p training points, each point is in IRn. Further, we have p targets,
each in IRm. We’re using k centers and the transfer function φ has been defined and its parameters set.

Training proceeds by setting up the linear algebra problem for the weights and biases- We use the diagram
in Equation 12.1 for each input x output t pairing to build the system of equations which we will solve using
the least squares error.

137



1. Build the design matrix Φ, where
Φi,j = φ(‖xj − ci‖)

As defined here, Φ will be k × p (number of centers by number of points).

2. Let T be the m× p matrix representing p target vectors in IRm.

3. Now the weight matrix takes us from the middle layer (in IRk) to the outer layer (in IRm), so it should
be m× k. Further, the bias vector b should be m× 1. The equation we need to solve for W, b is given
by:

WΦ + b = T (12.2)

4. It’s best to convert the equation in the previous step to a linear equation (rather than affine). We
modify W and Φ to take care of that:

Ŵ = [W b], Φ̂ =

 Φ

1, 1, 1, · · · 1


Now, Ŵ is m× k + 1 and Φ̂ is k + 1× p, and our previous equation becomes:

Ŵ Φ̂ = T

5. Finally, take the pseudoinverse of Φ (manually using the SVD or by using a built-in command) and
solve, giving

Ŵ = T Φ̂†.

We also recall that Ŵ = [W b], so if we want these separated, we can do this now.

12.2.4 Predicting data using the RBF

Once we have constructed the RBF, we can predict how new data will behave. To do this, remember that
we need the following:

• The set of centers, usually as a matrix.

• Which transfer function φ is being used, and its parameters, if necessary.

• The weights and bias values, W and b.

Once we have these, given N new input vectors, we would perform the following steps to output the result:

1. Compute the distance matrix between the N data points and k centers. Let’s assume this is a k ×N
matrix.

2. Apply the transfer function φ, and this results in the k ×N matrix Φ.

3. Apply our affine map, where W is m× k:

WΦ + b = Y

(This is not good linear algebra notation, but I hope you understand that this notation means to add
the column vector b to each column of the matrix WΦ).

4. Y is m×N and the model output (or prediction).
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Example

As an example of the interplay between the number of centers and the error, let’s try an experiment.

The data will be two dimensional, and the “true” un-
derlying function will be

z = exp

(
−x

2 + y2

4

)
with some noise added (with standard deviation of
about 0.5).
We’ll have 1500 points in the domain, and we’ll ran-
domly select the centers (for each training session)
from the data, and then train the network on 300
points. This could give us a lot of variation in the
error, so we’ll train 30 times (each with a different se-
lection of centers), and take the average for the given
number of cluster centers.
We will then consider the error on the test set of 1200
points, and plot the error versus the number of centers.

As we expect, the error decreases initially as we increase the number of centers. However, once we go
beyond a certain point, the error starts to increase again. This is the point at which we should stop adding
centers, because it means we’re starting to overfit.

Exercises

1. The following exercises will consider how we might set the width of the Gaussian transfer function.

(a) We will approximate:(∫ b

−b
e−x

2

dx

)2

=

∫ b

−b

∫ b

−b
e−(x2+y2) dx dy ≈

∫ ∫
B

e−(x2+y2) dB

where B is the disk of radius b. Show that this last integral is:

π
(

1− e−b
2
)

(b) Using the previous exercise, conclude that:∫ ∞
−∞

e
−x2

σ2 dx = σ
√
π

(c) We’ll make a working definition of the width of the Gaussian: It is the value a so that k percentage
of the area is between −a and a (so k is between 0 and 1). The actual value of k will be problem-
dependent.

Use the previous two exercises to show that our working definition of the “width” a, means that,
given a we would like to find σ so that:∫ a

−a
e

−x2

σ2 dx ≈ k
∫ ∞
−∞

e
−x2

σ2 dx
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(d) Show that the last exercise implies that, if we are given k and a, then we should take σ to be:

σ =
a√

− ln(1− k2)
(12.3)

The previous exercises give some justification for Matlab’s choice for approximating σ:

σ =
a√

− ln(0.5)

(I’m not sure why they stick with − ln(1/2) rather than just ln(2)!)

12.3 Orthogonal Least Squares

The following is a summary of the work in the reference [7]. We present the multidimensional extension that
is the basis of the method used in Matlab, but does not seem to be widely available in Python yet (Apr
2021).

First, we’ll get the big picture, and then we’ll look at some of the linear algebra that makes it work. It’s
most convenient to start with the linear version of the RBF equation:

Ŵ Φ̂ = T

Dimensions are important here, so let’s define them again: We’ll assume that we have p data points in IRn

as input, and the output dimension is IRm.
Initially, we’ll assume that every data point is a center, so we have p centers. That means that W is

m× (p+ 1), Φ is (p+ 1)× p, and T is m× p.
The first thing to notice is that jth row of Φ (except for the last one) corresponds to the jth center cj

(that is, the row of Φ is constructed by taking distances from cj and the p points in X).
The second thing to notice is that on the left side of the equation, we’re working with the row space of

Φ̂ and on the left side, we have the rows of T . Orthogonal Least Squares (or OLS) assumes that we’ll get a
“good solution” to the RBF equation if it is possible to select a small number of rows of Φ (corresponding
to a small number of centers) from which we can construct the rows of T .

Another way to think of OLS is that we want to try to use a small number of rows of Φ̂ (not really
counting the last row) in order to form a basis for the row space of T .

We cannot use the SVD in this case, because we want to use actual rows of Φ̂ and not combinations of
rows- that’s an important restriction to keep in mind.

The OLS Algorithm

Begin with all data in Φ̂, so this is now (p+ 1)× p.

1. Look for the row of Φ (in IRp) that most closely points in the same direction as a row of T . Call the
winning row index w.

2. Put point xw as a center.

3. Remove row w from Φ̂

4. Remove the component of the wth row from the other rows (this makes all the remaining rows orthog-
onal to row w).

5. Compute the error on the data using the current set of centers as the model.

6. Repeat until the error is small enough, or we have used the maximum number of centers allowed.

This algorithm always stops, either because some maximum number of centers has been reached, or
because we have used all the data (and the RBF equation will be interpolating the test data).
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Exercises for the OLS

There is some lovely linear algebra here. Let’s review it!

1. Show that, if we have a set of vectors X = [x1, . . . ,xk] and a vector y, then the vector in X that most
closely points in the direction of y (or −y) can be found by computing the maximum of:(

xTi y

‖xi‖‖y‖

)2

(12.4)

(Hint: What does this expression represent? Have we seen it before?)

2. To “remove the component of y in the direction of x” means to do what, exactly? It means that we
want to subtract the projection of y onto x from y- which means that the “new version” of y will be
orthogonal to x. Show that this formula will do the trick (that is, show ynew ⊥ x).

ynew = y − Projx(y) = y − yTx

xTx
x

Side Remark: We did this back in linear algebra when we looked at Gram-Schmidt orthogonalization.

3. Why might OLS not be used much now? (Hint: What if you have a very large number of data points?)

Homework:

Homework will be assigned separately, since it will involve an application of the RBF to several different
data sets, and you may choose to use Python or Matlab/Octave.

12.4 Summary of the Radial Basis Functions

1. What is a Radial Basis Function?

A radial basis function (RBF) is a general model to build a mapping from IRn to IRm.

2. Choices that need to be made when using an RBF:

(a) The transfer function φ that will be used.

Some choices: φ(r) = r, φ(r) = e−r
2/σ2

, φ(r) = r3, etc.

(b) The model parameters for an RBF are given by:

• The number of centers, k.

• The center locations, ci.
Common choices:

– The centers are randomly chosen from the data.

– The centers are chosen as the centroids of data clusters.

– The centers are chosen automatically using Orthogonal Least Squares (this is Matlab’s
default).

– The centers are chosen through optimization.

– In all cases, we could also define individual values of each parameter (like the widths of
the Gaussians).

3. Once φ and the centers have been chosen, we solve for weights and biases using a least squares solution.
That is:
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• Compute the distance matrix between the k centers and p data points.

• Form the transfer matrix Φ by applying φ to the distance matrix, so Φ is k × p.
• Add a row of ones to the bottom of matrix Φ, so that Φ̂ is (k + 1)× p.
• Solve Ŵ Φ̂ = T by using the pseudoinverse, so Ŵ = T Φ̂†.

4. To test the function on new domain points (we have now fixed the centers and the weight matrix W ):

• Form the distance matrix between the k centers and the p̂ new data points, this will be k × p̂.
• Apply φ to the distance matrix to get Φ (dimenesions k × p̂).
• Add a row to the bottom of matrix Φ to get Φ̂.

• The new output is Ŵ Φ̂.

5. Why use an RBF?

(a) Once the centers have been chosen, this is a linear modeling problem. That is, to find the weights,
we are solving a linear equation. Therefore, an RBF is much faster than methods that involve
nonlinear optimization.

(b) There are nice connections to statistics if we use the Gaussian transfer function, although we have
not discussed them.

6. Software and the RBF.

There are two ways of producing an RBF model in Matlab- one is to do it explicitly yourself, the other
is to use Matlab’s built-in routines using the “Neural Network Toolbox”. If you’re using the toolbox,
then the OLS is built into the newrb command.

Unfortunately, Octave doesn’t maintain a version of the neural network toolbox anymore, so the
subroutines needed need to be all provided (I have written those separately for you to use).

Alternatively, there isn’t much pre-written for Python for some reason (April 2021), so I will provide
you with the functionality needed, along with some examples.
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Chapter 13

Neural Networks

To give you an idea of how new this material is, let’s do a little history lesson. The origins of neural nets are
typically dated back to the early 1940’s and work by two physiologists, McCulloch and Pitts. Hebb’s work
came later, when he formulated his rule for learning. In the 1950’s came the perceptron. The perceptron
is what we called a linear neural network- it became clear that the perceptron could only classify certain
types of data (what we now call linearly separable data). This shortcoming led to a stop in neural net
research for many years- It was not until the 1980’s that neural net research really took off from a coming
together of many disparate strands of research- There was a group in Finland led by T. Kohonen that was
working with self-organizing maps (SOM); there was the work from the 70s with Stephen Grossberg, and
finally several researchers were discovering methods for training new networks that could be put in parallel
(back-propagation).

It was in the 80’s and 90’s that researchers were able to prove that a neural network was a universal
function approximator- That is, for any function with certain nice properties, we are able to find a neural
network that will approximate that function with arbitrarily small error. It is interesting to note that the
use of a neural network could be used to solve Hilbert’s 13th Problem1:

“Every continuous function of two or more real variables can be written as the superposition of continuous
functions of one real variable along with addition.”

Let’s look at some highlights of more recent developments in neural nets:

• 1989: George Cybenko proves that neural nets with certain types of activation functions are universal
function approximators.

• 1989: Yann LeCun used convolutional neural networks to read handwritten digits. This led to many
rapid developments, and Dr. LeCun shared the Turin prize in 2018 for this work.

• 1989: Q-Learning is something that takes machine learning to a different branching- This greatly
improves the area of reinforcement learning.

• 1993: Support Vector Machines (SVM), around for a long time but brought into machine learning,
designed by C. Cortes and V. Vapnik.

• 1998: Yann LeCun brings in Stochastic Gradient Descent as a practical solution to large problems.

• 2006 or so: Approximately the beginning of “deep learning”, as coined by Geoffrey Hinton (a key
player in machine learning for a very long time, also given the Turin award in 2018).

• 2009: The launch of ImageNet (Fei-Fei Li at Stanford). As of 2017, it contains 14 million labeled
images that are available to researchers. The casual reader may not appreciate how key this is-

1 In 1900, mathematician David Hilbert listed what he viewed as the 23 greatest unsolved problems. This list has been
worked on ever since, and as of 2021, problems 8, 12, 13 and 16 remain unsolved.
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“Deep learning” requires vast amounts of data, and this kind of data was not readily available to the
community earlier.

• 2011: IBM’s Watson computer wins Jeopardy!.

• 2011: The use of the Rectified Linear Unit (or ReLU) as activation function. This function is used in
deep networks to counter what is called “the vanishing gradient problem”.

• 2012: Creation of AlexNet - Its success kicked off a spike in researching convolutional neural nets (that
continues to this day).

• 2014:

Generative Adversarial Networks (GAN). Basically, a second neural net
is built as an “adversary”, where it builds data to try to fool the neural
net that is learning a particular task. The basic idea has expanded,
and these networks can now generate realistic images of human beings.
The person to the right does not exist.
(Photo from Wikipedia Commons)

Coming to present day, research is aimed at something called deep
neural nets- in summary, the difference now is that we have a LOT
of training data, and new algorithms and architectures that make it
feasible to train complex associations. A nice summary of “The Decade
of Deep Learning” is given at the site below (accessed Apr 2021):
https://bmk.sh/2019/12/31/The-Decade-of-Deep-Learning/

Back to feed forward nets

The term “neural network” has come to be an umbrella term covering a broad range of different function
approximation or pattern classification methods. The classic type of neural network can be defined simply
as a connected graph with weighted edges and computational nodes- We’ve seen a linear neural network
(using Widrow-Hoff training rule). We now turn to the workhorse of the neural network community: The
feed forward neural network.

13.1 From Biology to Construction

We’ve seen the basic model before in the linear neu-
ral networks. We include some of it again for clarity.
Information flows from the dendrites to the cell body
through the axon to a synaptic junction connecting to
the dendrite to the next neuron.
The synaptic junction is made up of the presynap-
tic node (the end of an axon), the postsynaptic node
(the beginning of a dendrite), and the “empty space”,
which is the synapse.
A diagram of a neuron is shown to the left.

As information flows across a synapse, information can be amplified, inhibited, or re-polarized. We’ll
discuss our model of cell body processing and flow over the axon, but this is all the biology we use. It’s best
to think of neural nets as being inspired by biology, although there are researchers interested specifically in
working with biological neural nets.

Before we look at the neural net on the level of a layer of neurons, let’s look at how a single neuron (or
“node”) processes information:
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Let x1, . . . , xn denote the signals incoming along the dendrites. We model the processing done here by
multiplying the signal by a real number which we call a weight.

At the cell body, these signals are first collected in what we’ll call the prestate of the cell. They are
added to a “bias term”, b, which loosely represents the resting state of the cell.

p =

n∑
j=1

wjxj + b = w · x+ b

An activation function is applied, we’ll just call it f
for now. Applying f , we get what is called the state
of the cell, or the cell’s activation:

s = f(p)

And this value is then sent along the axon. Here is
a typical way we might make a diagram of a single
neuron, where the cell body has been divided into the
sum stage, then the activation.
Putting lots of cells together is what a neural network is. Below on the left, we show a three layer

network. Data is input at the first layer, the second layer is really the layer of cells, and the last layer is the
output layer. In finding a mapping from IRn to IRm with k cells, we would construct a n− k −m network.

Below and to the right, we see networks don’t have to have a single layer; we can apply lots of layers
to get a multilayer network. Training these can be difficult, and is the subject of our next chapter in deep
learning. For the time being, we’ll keep with a single hidden layer.

Next we’ll look at how information flows through the network. It is easiest to describe using layers and
linear algebra.

13.2 How Networks Compute

At the input layer, we’re presented with a real value at each input node, which we’ll denote as a vector
x ∈ IRn. Next, we move from IRn to IRk. The affine mapping that takes us from the input layer to the
hidden layer is defined as

P (2) = W (1)x + b(i)
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where P (2) is the vector in IRk representing the prestate in each node (or cell). Since the weight matrix W (1)

is k × n, we make an important observation:

W
(i)
jk is the weight connecting cell k from layer i to cell j on layer i+ 1.

It is tempting to say this connection backwards (“j connected to k”), so please be careful with that- It is
the opposite of what you might think it is.

Now continuing, we apply function f to the prestate vector P (element-wise) to get the state vector S.

S(2) = f
(
P (2)

)
= f

(
W (1)x + b(i)

)
Now we apply an affine transformation from IRk to the m dimensional output layer. This means that the
second weight matrix has dimensions m× k:

P (3) = W (2)S(2) + b(2)

Typically, we don’t do any more processing, so we can think of the activation function f on the final layer
as the identity function, f(x) = x.

S(3) = P (3) = W (2)S(2) + b(2) = W (2)
(
f
(
W (1)x + b(i)

))
+ b(2)

To be consistent with all layers, we usually define the prestate at the input layer to be just x, and the
activation function as the identity, so the layer doesn’t do anything but output the same as what is input.
With that, the computations a neural network takes can be described by the chain:

input = (P (1) → S(1)) −→ (P (2) → S(2)) −→ (P 3 → S(3)) = output

It is simple now to see how to add more layers. We can keep extending this chain almost indefinitely.

The Network Produces Composition(s)

There is one important way to look at this sequence of operations that has some implications when we
compute derivatives: This sequence of operations is function composition, which is clear when we write the
output layer in terms of the input layer:

S(3) = W (2)
(
f
(
W (1)x + b(i)

))
+ b(2)

If we add more layers, then the state at the third layer should be written again as f(P (3)), because presumably,
f would not now be the identity. In that case, the output at the added fourth layer would be:

S(4) = W (3)
[
f(W (2)

(
f
(
W (1)x + b(i)

))
+ b(2))

]
+ b(3)

and so on.

13.3 The Activation Function

The function f here is key. If f is linear, then the neural net is a linear network (we’ve already discussed
those). Importantly, f on the hidden layer must be nonlinear. And importantly, in 1989, Cybenko proved
the result about universal function approximation assuming that f is a sigmoidal function.

Definition: Suppose a function σ(x) has the following properties:

• It is monotonically increasing.
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• lim
x→−∞

σ(x) = A

• lim
x→∞

σ(x) = B

Then σ(x) is called a sigmoidal function.

Common choices for the sigmoidal function include:

1. The log sigmoidal function (in Matlab, this is logsig)

logsig(x) =
1

1 + e−x

2. The hyperbolic tangent (in Matlab, this is tansig)

tanh(x) =
e2x − 1

e2x + 1

Typically, we will use the first option, since its derivative is very easy to compute (see the exercises), and
typically the so-called “linear activation function”, σ(x) = x is used at the input and output layer.

13.3.1 Recent Developments for the Activation Function

While the sigmoidal function was used by Cybenko in his proof, it has some shortcomings that didn’t become
clear until very large networks were being trained. The two main shortcomings:

• The “squashing” function becomes saturated.

The sigmoidal only has a small interval on which it can keep input points apart (see the graph below).
If |x| is greater than about 2, then all positive points start to map to 1, and all negative points to 0
(this is explored more in the exercises).

• The vanishing gradient problem.

From the graph, see if you can esimate the derivative. For most x, the derivative is less than 1. Recall
that a neural net is function composition so that the derivative is multiplication. What happens when
you multiply a bunch of numbers that are less than 1? The values go to zero- This is the vanishing
gradient problem (we’ll discuss this more in the section on training).
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The Rise of ReLU

The activation function that most use now is the “rectified linear unit”, or ReLU. Mathematically, this is
defined as:

ReLU(x) =

 0 if x < 0

x if x ≥ 0

The perhaps obvious issues with using this function are (1) nondifferentiable at 0, and (2) it becomes
unbounded. Further, if a learning rate is set too high, it has been observed that the ReLU’s can be “pushed”
out so far that they are basically zero- this is the “Dying ReLU problem”.

In spite of the difficulties, in 2011 it was found that the ReLU function is a viable alternative to the
sigmoidal function, even though it does not have all the properties of a sigmoidal. A few short years later,
in 2017 it was found to be the most popular activation function for deep networks.

Exercises

1. Sketch the ReLU transfer function and its derivative.

2. If x ∈ IRn and our targets t ∈ IRm, and we use k nodes in the hidden layer, how many unknown
parameters do we have to find?

As you are constructing your network, keep this number in mind. In particular, you should have at
least several data points for each unknown parameter that you are looking for.

3. We have to be somewhat careful when our data is badly scaled. For example, complete this table of
values:

x 0 0.5 1 10 40 100

tanh(x)

logsig(x)

You should see that, while the change in x between neighboring points is getting very large, that the
corresponding changes in y are going to zero. This is problematic- If your data is large, or the weights
are large, then the sigmoidal may simply start to output a constant.

This phenomenon goes by the name of saturation.

4. Some people like to scale the sigmoidal function by an extra parameter, β, that is σ(βx). Show by
sketching what happens to the graph of the sigmoidal (either the tansig or logsig) as you change β.

It is not necessary to scale the sigmoidal, as this is equivalent to scaling the data instead (via the
weights).

5. Show that if σ(x) is the logsig function, then

σ′(βx) = βσ(βx)(1− σ(βx))

This is the reason this function is so popular- It is very easy to compute its derivative.

6. Show, using the definition of the hyperbolic sine and cosine, that the hyperbolic tangent can be written
as:

tanh(x) =
sinh(x)

cosh(x)
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7. Show that the hyperbolic tangent can be computed as:

tanh(x) =
2

1 + e−2x
− 1

(Matlab claims that this version is faster, but warns about possible numerical error)

8. Other Extensions of the activation function

Some other interesting activation functions can be used at the nodes. Here are a couple of unique ones-
They are used to encode circular or spherical information:

(a) The Circular Node (two inputs, two outputs per node):

σ(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)

(b) The Spherical Node (three inputs, three outputs):

σ(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

See [19, 20] for examples of how to implement the last two transfer function types.

13.4 Training and Error

To define a three layer neural network in the form n− k −m, we should first define the activation function
f . Although we could define a different function for every neuron, we typically will use the same transfer
function for all the neurons in a single layer.

Once that is done, then we have to find matrices W (1),W (2) and the bias vectors b(1),b(2). Altogether,
this makes (nk + k) + (mk +m) parameters. Ideally, we would have much more data than that in order to
get good estimates. In any case, we want to minimize the usual sum of squared error:

E(W (1),W (2),b(1),b(2)) =
1

2

p∑
i=1

‖t(i) − y(i)‖2

where y(i) is the output of the neural net using the ith input. In the case of a single hidden layer, we have:

y(i) = W (2)
(
σ
(
W (1)x(i) + b(1)

))
+ b(2)

As usual, “training” means finding the weights and biases that minimize the error function, and now
we’re back at function optimization. We’ve discussed these methods before, but here is a short list:

• Method of Steepest Descent (or Gradient Descent).

• Stochastic Gradient Descent is an excellent one to use when we’re programming it ourselves, since we
only have to deal with the derivative one data point at a time.

• Newton’s Method (an indirect method, solving for where the derivative of the error is 0).

• Conjuage Gradient (Search along the eigenvectors of the Hessian of the error)

• Levenburg-Marquardt (A combination of the techniques above).
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These techniques are typically implemented in any good system- one can find these solvers in Matlab
and in Python, look at scipy.optimize.least_squares. Before we go too much farther into the general
case, let’s take a look at a concrete example.

Most optimization algorithms will require that we obtain expressions to compute the partial derivatives
of E with respect to the weights and biases. It is fortunate that, for large networks, there is a recursive
algorithm to accomplish this called the backpropagation of error. In the next section, we’re going to look
at the computational steps of this algorithm, then after that, we’ll prove that we have actually computed
the desired partial derivatives.

13.5 Backpropagation of Error

First, let’s reconsider the single node of a neural network, and consider the computations it makes. Since
we’re looking to program this soon, think of each node as storing these values somewhere for future access.

When we go through what’s called a forward phase for a network, we move from left to right computing
the given values, where P is the prestate, S is the state (so S′ is its derivative evaluated at P ), and ∆ is a
placeholder for the backwards phase

In particular, looking at node k in layer i as in the diagram below, the computations are (layer-wise):

P (i) = W (i)S(i−1) + b(i), S(i) = σ(P (i)) = σ
(
W (i)S(i−1) + b(i)

)
S(i)′ = σ′(P (i))

If Ni−1, Ni, Ni+1 are the number of nodes in layers i−1, i, and i+1 respectively. The first operation through
this layer represents an affine map from IRNi−1 to IRNi that is the layer’s prestate. So W (i) is an Ni ×Ni−1

matrix, and P (i) is a vector in IRNi , and so is S(i). The derivative is the same size, and the derivatives

(evaluated at the current prestate) are stored in S(i)′. In the picture below, P, S, and S′ are all scalar values
being computed specifically at node k.

There are two special cases:

• The input layer:
P (1) = x, S(1) = x S(1)

′
= ones

• At the output layer, we will make the assumption that the activation function is the identity. If we
have L layers, then:

P (L) = W (L)S(L−1) + b(L), S(L) = P (L−1), S(L)′ = ones
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And the computation at the output layer finishes the forward phase.
The “backwards phase” for the network is to move information from right to left, where our goal is now

to compute the values of ∆ that were left blank.
Starting at the output layer, ∆(L) = t − y, which is the error between the target value and the output

of the net. Notice that in that equation, ∆ is a vector of values, one value for each output node, and in the
picture to the right below, we included S′, but if the activation function is the identity, this is just equal to
1.

The asterisk in the image above and to the left represents the computation we make for that node’s ∆
value. In this particular case, think of the ∆′s in layer i + 1 moving to the left so we have to multiply by
the corresponding weight. We then sum those up and multiply by the derivative there. That is:

∆
(i)
k = S

(i)
k

′
Ni+1∑
j=1

∆
(i+1)
j W

(i+1)
jk

This may look complicated, but think of it in terms of the reverse affine map from IRNi+1 to IRNi . Then we
can compute all of the ∆′s in layer i all at once:

∆(i) = ((W (i+1))T∆(i+1)) .∗S(i)′

Somewhere a linear algebra teacher is crying. OK, so just to be crystal clear, our multiplication is not a dot
product, we are performing the multiplication (using the Matlab symbol .*) between two vectors element-
wise so the result is also a vector of the same size. Also to be very clear, let’s figure out the dimensions of

everything there: W (i+1) is Ni+1 ×Ni (so the transpose reverses those), ∆(i) has Ni+1 elements, and S(i)′

has Ni elements.
Once we reach the input layer, we’re done. Now what do we do with these ∆ values? I like to use the

following memory device to help me remember how this goes. Below we see an edge, and we want to use the
state on the left and the ∆ on the right with the edge and weight connecting the two.
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Then here is the big conclusion:

Backpropagation of Error

∆W
(k)
ij = S

(k−1)
j ∆

(k)
i (13.1)

The update rule for the weights is now (using gradient descent):

new W
(k)
ij = old W

(k)
ij + α∆W

(k)
ij

where the plus sign is not a typo, and α is the learning rate.

Thinking back, this kind of update rule was a lot like Widrow-Hoff, and in that case, we were able to
write the update using linear algebra so we could update weights all at once.

Update Rule Using Linear Algebra

Remember that matrix W (i) connects layer i− 1 to layer i, so that W (i) is Ni ×Ni−1. In our update rule,
we are taking states from layer i− 1 (so we have a vector with Ni−1 entries) and the deltas from layer i (so
that is a vector with Ni entries. To give away the punch line, if we take the outer product between these
two vectors (in the right order), we’ll have a matrix the same size as W (i). You should verify this works by
looking at the dimensions of the three objects below.

∆W (i) = ∆(i)(S(i−1))T

And finally,

W (i)
new = W (i) + α∆W (i)

You might think we’re done, but there are still three big questions we have to answer:

1. These computations were for a single data point. What do I do with p data points?

2. Is this really gradient descent? Prove it!

3. Where did the bias terms go??

These questions will be answered in the next section, where we do actually show that our computations
do result in gradient descent.

13.6 Backprop Proved

The answer to the first question goes pretty quickly. With p data points, if we use the sum of squares as
the error, then each of the 4 numbers we computed per node should be summed over all the input (that’s
before the backward phase). Some people use the average error, and in that case, you would average each
of the 4 numbers over all the input.

For the second question, we’ll need to break out our Calculus. The function we want to minimize is
the error function. We’ll put a 1/2 in the front so we don’t have to deal with putting 2 in front of everything
when we differentiate.

E =
1

2

p∑
i=1

‖t(i) − y(i)‖2
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We’ll show that our rules do indeed produce the gradient descent. Recall that W l
mn connects node n in

the layer to the left to node m in the layer to the right. Therefore, Slm is the state of node m in layer l (to
the right of the edge labeled W l

mn). Using these relationships, we can write:

∂E

∂W l
mn

=
∂E

∂Slm

∂Slm
∂P lm

∂P lm
∂W l

mn

(13.2)

The two values on the right can readily be computed:

∂Slm
∂P lm

= σ′
(
P lm
) ∂P lm

∂W l
mn

= Sl−1
n (13.3)

This leaves the first term which can be evaluated on the output layer L:

∂E

∂SLm
=

∂E

∂ym
= (tm − ym)(−1)

On the rest of the layers, the term can be defined recursively,

∂E

∂Slm
=

∑
j∈nextlayer

∂E

∂Sl+1
j

∂Sl+1
j

∂Slm
(13.4)

Since Sl+1
j = σ(P l+1

j ) = σ(W l+1
jm Slm + other terms), the derivative will be

∂Sl+1
j

∂Slm
= σ′(P l+1

m )W l+1
jm

Now we’ll connect up the two sets of notation:
Definition: We’ll define ∆ as the product of the first two terms of Equation (13.2):

∆l
m = − ∂E

∂Slm

∂Slm
∂P lm

= − ∂E

∂Slm
σ′(P lm)

Therefore, on the output layer,

∆L
m =

∂E

∂SLm

∂SLm
∂PLm

= −(tm − ym)(−1)σ′(PLm)

which matches Equation (??). Now, using Equation (13.4), the nodes on the previous layer are computed:

∆l
m = − ∂E

∂Slm

∂Slm
∂P lm

=

 ∑
j∈layerl+1

− ∂E

∂Sl+1
j

∂Sl+1
j

∂Slm

σ′(P lm) =

σ′(P lm)

 ∑
j∈layerl+1

− ∂E

∂Sl+1
j

σ′(P l+1
m )W l+1

jm

 =

σ′(P lm)

 ∑
j∈ layerl+1

∆l+1
j W l+1

jm


And this is Equation (??). Finally, by Equation (13.3), we can write:

− ∂E

∂W l
mn

=

(
− ∂E

∂Slm

∂Slm
∂P lm

)
∂P lm
∂W l

mn

= ∆l
mS

l−1
n
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which proves that the update rule in Equation (13.1) is indeed gradient descent. Now for the second question:
How should we deal with bias terms?

For the bias term, we will add a node to each layer, but for these nodes, the state is the constant function,
S = σ(x) = 1, and the weight connecting this node to node k of the next layer could be labeled blk. That
also means that ∆ for a bias node is 0, but now Equation (??) becomes:

blk = blk + ε∆l
k

where the ∆l
k is the value of ∆ to the node to which blk is connected.

13.7 Simple Construction of a Feed Forward Neural Net

The neural net is simple to construct if we view it in terms of its layers.

• Initialize the n− k −m network:

Build the weights and biases with random numbers. Be sure to pay attention to dimensions.

W (1) is k × n b(1) is k × 1

W (2) is m× k b(2) is m× 1

• Compute the output of a neural net given the weights, biases. Here we’ll assume that the activation
function is σ(x), and has been determined. The computation proceeds in layers. For the three layer
network (layers 0, 1, and 2), we’ll have the series of computations. This is a forward pass:

– P (1) = W (1)x+ b(1)

– S(1) = σ(P (1)). Compute S(1)
′

as well.

– P (2) = W (2)S(1) + b(2)

– S(2) = P (1). Then S(1)
′

is a vector of ones. The output is S(2).

• A backwards pass for backpropagation of error:

– ∆(2) = (t− y) (This is a vector in IRm).

– ∆(1) = (W (2))T∆(2) .* S(i)′ (We use Matlab’s .* to denote elementwise mutliplication)

• Compute the changes to the weights and biases:

– ∆W (1) = ∆(1)xT

– ∆W (2) = ∆(2)(S(1))T

– ∆b(1) = ∆(1)

– ∆b(2) = ∆(2)

• Apply the changes:

W (1) = W (1) + α∆W (1), W (2) = W (2) + α∆W (2), b(1) = b(1) + α∆b(1) b(2) = b(2) + α∆b(2)
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Appendix A

An Introduction to Matlab

Intro To Matlab

Matlab (short for Matrix-Laboratory) was originally designed as a front end for numerical linear algebra
routines (numerically finding eigenvalues and eigenvectors, etc.). Now it is an industry standard for fast
development of numerical solutions to mathematics.

Matlab is different than Maple: Maple is known as a specific example of a computer algebra system,
which means that Maple was designed to work symbolically (e.g., factor a polynomial, compute derivatives
and antiderivatives symbolically, etc.). On the other hand, Matlab was developed for numerical work. In
fact, there are ways of calling Matlab from inside Maple, and vice versa (although we won’t be doing that).

If you have had a class in computer programming, then Matlab will look very familiar. There are three
ways of running Matlab, and we will consider each:

• Run Matlab “live”, by typing in commands.

• Run Matlab by running a script file. A script file is just a text file with the Matlab commands typed
in.

• Run Matlab by calling programs that you have written. We’ll see how to do this in just a moment.

Starting the Matlab Program

First you need an account in the Mathematics computer lab- See your instructor if you need an account of
if you’ve forgotten your password.

Once you have logged in, open a shell window and type matlab at the prompt. The splashscreen will
come up, and you’ll get a command window that looks like:

< M A T L A B >

Copyright 1984-2001 The MathWorks, Inc.

Version 6.1.0.450 Release 12.1

May 18 2001

To get started, select "MATLAB Help" from the Help menu.

>>

To exit from Matlab, either type exit from the command window, or choose Exit from the window menu
(under File).
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Saving your work

Typically, homework and larger projects should be done by writing a script rather than typing in commands
live. It makes it easy to change and debug, rather than typing all your work over again!

Matlab has a very nice text editor that you can use to type out and save Matlab functions and scripts-
To access the editor, type edit in the Matlab command window.

All of the Matlab files that we write will end in a *.m suffix (like Example01.m, etc.). Before we go much
further, let’s open up Matlab and try some commands live:

Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /, ^ are addition, subtraction,
multiplication, division and exponentiation. Type them in just as you would write them. For example,
25 would be typed as 2^5.

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent as sin , cos , tan . So, for
example, the sine of 3.1 would be typed as: sin(3.1)

The number π is used so frequently that Matlab has its (approximate) value built-in as the constant
pi. For example, sin(π) is typed as sin(pi). Note that π uses a lowercase “P”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in as a constant (like π). To take the number e to a power,
use the functional form: ex = exp(x) So if I want the number e, I would type exp(1), and so on.

For the natural log (log base e), use the notation log. For example, ln(3) is written as log(3). We
will only use the natural log- if in the future you want a different base, look up the log command by
typing help log.

4. Complex Numbers and Arithmetic

Matlab has complex arithmetic built-in. Either the letter i or j can be used to represent
√
−1, but a

word of caution is in order here: You can only use i or j for
√
−1 ONLY if you have not previously

defined them. If you think you’re going to use complex numbers, do not use the letter i for anything but
complex arithmetic! Example: (0.2+3*i)*(5+2*i) will multiply the two complex numbers together
(using complex arithmetic).

Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:

who List all variables currently in use.

whos List all variables, and their sizes.

ls or dir List the contents of the current directory.

cd Change the directory. For example, cd examples would change the current directory to your file
named examples. To go up the structure instead of down, type cd ..

pwd Tell me where in the directory structure I’m currently at.

where command Tell me where command.m is located.
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help command List the help file for the function command. For example, to get help on the sine
function, type help sin.

demo Lists all the demonstration programs that Matlab came with- This is fun to look at. We don’t
have all of them; you can go to Matlab’s website to look at more: www.mathworks.com.

A Programming Note: Assignment v. Equality

In computer programming, the equal sign does not mean mathematical equality. We use the equal sign as
an assignment operator. For example,

A=3;

means to assign the value of 3 to the variable A- If A has not been assigned to anything before, this command
will also create that variable.
Definition: In computer programming, A = B means that we will assign the value of B to the variable A.

Using this, what will the following commands do?

x=5;

x=x+3;

Answer: First, the value 5 is assigned to the variable x. Next, x+ 3 is computed as 8, and finally, the value
of 8 is assigned to the variable x.

Not an example: 5=x;, you would get an error- the number 5 is not a variable.
The assignment operator is also used to label the output of a function. For example, the following

commands stores a vector [1, 2, 3] into the variable x, then we apply the sine function to each of those
numbers and store them in y to get [sin(1), sin(2), sin(3)]:

x=[1,2,3];

y=sin(x);

Matrices

Matlab was originally designed as a “front end” to access LINPACK and EISPACK, which are numerical
linear algebra packages written in FORTRAN. From this beginning, Matlab’s basic data type is the matrix.

I enter the following matrix:

A =

 1 2 3 4

5 6 7 8


as:

A=[1 2 3 4; 5 6 7 8];

or as:

A=[1 2 3 4

5 6 7 8];

Note the use of the semicolon: Inside a matrix, the semicolon indicates the end of a row. Outside the matrix,
the semicolon suppresses Matlab output. You can also separate numbers using a comma if you’d prefer that.
Rows and columns are entered in a corresponding way, as either a 1× n matrix or as a n× 1 matrix.

We access elements of the matrix in a natural way. For example, the (2, 3) element of A is written as
A(2,3) in Matlab (in this case, A(2, 3) is 7). You can change the elements using the assignment operator =.
For example, if we want to change the (1, 3) element of A from 3 to 6, type:

A(1,3)=6;
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Special Commands: The colon operator

• a:b

Produces a listing from a to b in a row:

a:b gives [a, a+ 1, a+ 2, . . . , a+ n]

where n is the largest integer so that a+ n ≤ b. For example, x = 2 : 9 puts x as a row vector whose
elements are the integers from 2 to 9.

• a:b:c

Produces the numbers from a to c by adding b each time:

a:b:c gives [a, a+ b, a+ 2b, . . . , a+ nb]

where n is the largest integer so that a+ nb ≤ c. For example, 1 : 2 : 7 returns the numbers 1, 3, 5, 7.
Type the following into Matlab to see what you get: 1:2:8 and 1:0.5:6

Matlab commands associated with Arrays

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the number b (inclusive). For example,
x=linspace(2,3.5,40) produces 40 numbers evenly spaced beginning with 2 and ending with 3.5.

SHORTCUT: Leaving off the third number c will give you 100 numbers between a and b (That is,
c = 100 is the default value.)

Compare this with the colon operator. We would use the colon operator if we want to define the length
between numbers, and use linspace if we want to define the endpoints.

• Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m × n array of random numbers (uniformly distributed) between 0 and 1.
If you just want a single random number between 0 and 1, just type rand

A=randn(m,n) produces an m × n array of random numbers (with a normal distribution) with zero
mean and unit variance. If you want a single random number (with a normal distribution), just type
randn

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B by replicating B m times down
and n times across.

Example: Let B =

 1 2

3 4

. Then A=repmat(B,2,3) creates the array:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4
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Matrix Arithmetic

• Transposition is denoted by the single quote character ’. That is, A’ = AT . (CAUTION: If A contains
complex numbers, then A’ is the conjugate transpose of A, sometimes denoted as A∗ = ĀT )

• Matrix addition and subtraction is performed automatically and is only defined for matrices of the
same size.

• Scalar addition. If we want to add a constant c to every item in an array A, type: A+c

• Scalar Multiplication: We can multiply every number in the array by a constant: If A is the array and
c is the constant, we would write: B=c*A

• Matrix Multiplication: Use the regular multiplication sign for standard matrix multiplication. If A is
m× n and B is n× p, then A*B is an m× p matrix, as we did in linear algebra.

• Elementwise Multiplication. We can multiply and divide the elements of an array A and an array B
elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an array A, we would write: A.^2
This is the same as saying A.*A

• Functions applied to arrays: Matlab will automatically apply a given function to each element of the
array. For example, sin(A) will apply the sine function to each element of the array A, and exp(A)

will apply ex to each element of the array. If you write your own functions, you should always decide
ahead of time how you want the function to operate on a matrix.

Accessing Submatrices

Let A be an m× n array of numbers. Then:

The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: What kind of an array would the following command produce?

A([1,3,6],[2,5])

A 3× 2 matrix consisting of the elements:

A(1, 2) A(1, 5)

A(3, 2) A(3, 5)

A(6, 2) A(6, 5)
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Example: Create a 5× 5 zero array, and change it to:

0 0 0 0 0

0 1 2 3 0

0 4 5 6 0

0 7 8 9 0

0 0 0 0 0

Answer:

A=zeros(5,5); %Create the matrix of zeros

b=[1 2 3;4 5 6; 7 8 9];

A(2:4,2:4)=b;

Note also the use of the % sign. It is used to denote comments; that is, Matlab would ignore everything on
the same line after the % sign.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix. Before doing it, we define [ ]

as ”the empty array”: the array with nothing in it.
In the following, let A be a 4× 5 array, let b be a 1× 5 row, and c be a 4× 1 column.
Examples of use (each of these are independent from the previous):

The command: Produces:

A(1,:)=[]; Delete the first row.

A([1,3],:)=[]; Delete rows 1 and 3.

A(:,3)=[]; Delete column 3.

A(:,1:2:5)=[]; Delete the odd columns.

A(1,:)=b; Put b as row 1.

A(:,6)=c; Add c as the last column.

d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.

A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.

A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

Example: Matlab comes with some built-in data sets. One such set is the image of a clown. For fun, we’ll
load the array in, display it, then we’ll remove all of the even rows and columns, then re-display it:

X=load clown.mat

whos

image(X);

colormap(map);

X(2:2:200,:)=[];

X(:,2:2:320)=[];

image(X);
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Once you’re done, you may want to clear the memory and the screen:

clear

clc

If you want to re-do the clown again, you do not need to retype it! Use the up-arrow key to bring back the
commands you typed. You can also type the first few characters, then use the up-arrow key:

X=(up arrow)

Solving Ax = b for x

To solve Ax = b for x, Matlab has two basic commands: x=A\b or x=pinv(A)*b. The command pinv(A)

computes the pseudoinverse of A, which we will discuss later in the section dealing with the Singular Value
Decomposition.

In linear algebra, there were three possible outcomes for solving Ax = b for x. They were:

1. A unique solution.

2. An infinite number of solutions.

3. No solution.

Matlab will always give exactly one solution. We need to interpret that solution in the second two
cases. In the case of an infinite number of solutions (we have free variables in this case, also called an
underdetermined system), the two methods may give different answers:

• x=A\b provides the most zeros in x.

• x=pinv(A)*b gives x with the smallest norm.

Example: Let A =

 1 0 −2

0 1 1

, with b =

 9

3

. Then the full solution is:

x =


9 + 2t

3− t

t

 (A.1)

In Matlab, the result of typing x=A\b is x = [0,−15/2,−9/2]
T

and the result of typing x=pinv(A)*b is
x = [4, 11/2,−5/2].

(MATLAB HINT: You can get Matlab to return numbers as fractions by typing format rat )

In the case of an overdetermined system (a system with no solution), Matlab will automatically return
the least squares solution- that is, the answer x∗ will be the minimum of ‖Ax− b‖:

‖Ax∗ − b‖ ≤ ‖Ax− b‖, for all x

In general, you should always use the forward slash (for help, type help slash): x=A\b which auto-
matically determines a best numerical method. That is, sometimes its best (numerically) not to explicitly
compute the pseudoinverse first.
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Exercise Set I

1. What is the Matlab command to create the array x which holds the integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be that zeros out the even-numbered
indices (That is, x(2), x(4), x(6), . . . )?

3. What is the difference in Matlab between typing: x=[1 2 3] and x=[1,2,3] and x=[1;2;3]? What
happens if you type a semicolon at the end of the commands (i.e., x=[1 2 3];)?

4. (Referring to the last question) For each of those, what happens if you type x.^2+3? What happens
if you forget the period (e.g., x^2+3 )

5. What do the following commands do: x=2;3;6;, x=2:3:6;, a=pi:pi:8*pi;

6. Describe the output for each of the following Matlab commands. Recall that typing a semicolon at the
end of the line suppresses Matlab output- to see the results, leave off the semicolon.

A=rand(3,4);

A([1,2],3)=zeros(2,1);

B=sin(A);

C=B+6;

D=2*B’;

E=A./2;

F=sum(A.*A);

7. What will Matlab do if you type in:

A=rand(3,4);

A(:)

A(7)

NOTE: This is very bad programming style! Don’t do it unless you know what you’re doing!!

8. What is the Matlab command to perform the following:

(a) Given an array x, add 3 to each of its values.

(b) Given an array A, remove its first column and assign the result to a new array B.

9. What will the following code fragment do?

a=1:10;

for k=1:10

h=ceil(length(a)*rand);

b(k)=a(h);

a(h)=[];

end

Compare this with a=ceil(10*rand(10,1)) and a=randperm(10)

10. Use the Quick Summary sheet to help you write a code fragment that takes a random matrix X and
re-sorts the columns so that the first column has the smallest size and the last column has the greatest
size.
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How do I get a Plot?

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

You’ll see that we had to create a domain array and a range array for the function. We then plot the arrays.
For example,

plot([1,2],[3,4]);

will plot a line segment between the points (1, 3) and (2, 4). So, Matlab’s plotting feature is drawing small
line segments between data points in the plane.

Examples

1. Matlab can also plot multiple functions on one graph. For example:

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,x1,y2,x2,y3);

produces a single plot with all three functions.

2. plot(x1,y1,’*-’);

Plots the function y1, and also plots the symbol * where the data points are.

3. plot(x1,y1,’k*-’,x2,y3,’r^-’);

Plots the function y1 using a black (k) line with the asterisk at each data point, PLUS plots the
function y2 using a red line with red triangles at each data point.

The following lists all of the built in colors and symbols that Matlab can use in plotting: (NOTE: You
can see this list anytime in Matlab by typing: help plot )

Code Color Symbol

y yellow . point

m magenta o circle

c cyan x x-mark

r red + plus

g green − solid

b blue ∗ star

w white : dotted

k black −. dashdot

−− dashed
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4. The following sequence of commands also puts on a legend, a title, and relabels the x− and y−axes:
Try it!

x=linspace(-2,2);

y1=sin(x);

y2=x.^2;

plot(x,y1,’g*-’,x,y2,’k-.’);

title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);

xlabel(’Dollars’);

ylabel(’Sense’);

5. Other Things: If you look at the plotting window from the last example, you’ll see lots of things that
you can do. For example, there’s a zoom in and a zoom out feature. You can also edit the colors and
symbols of your plot, and the title, legend and axis labels. Try them out!

Plotting in Three Dimensions

Matlab uses the plot3 command to plot in three dimensions. We won’t be using this feature here. To get
more information, either type help plot3 or refer to the Matlab Graphics Manual.

M-Files: Functions and Scripts

What is a Matlab Function? A Matlab function is a sequence of commands that uses some input variables
and outputs some variables. The following is a very simple Matlab function:

function y=square(x)

%FUNCTION Y=SQUARE(X)

%This function inputs a number or an array, and

% outputs the squares of the numbers.

y=x.^2;

You would type this in the editor, then save it as square.m (the filename must be the same name as the
function, and it must use the .m extension).

You’ll notice that the first line states “function”. This is always the first line of a Matlab function. The
remarks that follow the first line are very important. When you type help square, these three lines appear.
So when you write your own functions, you should include comments so that you can remember how to use
it.

The rest of the first line defines what the input variable is (x), and what the output variable is (y).
A Matlab function can produce multiple outputs. For example:

function [A,b]=randmatrix(n)

%FUNCTION [A,b]=RANDMATRIX(N)

%Produces an 2n x 2n random matrix A and a random

%column vector b.

nn=2*n;

A=rand(nn,nn);

b=rand(nn,1);

To call this function from Matlab, you would write, for example,
[X,y]=randmatrix(10);

You’ll notice that after running this program, the variables internal to the function (in this case nn)
disappear. This is one major difference between a script and a function:
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• A script file is a text file with a sequence of Matlab commands. It is used by Matlab just as if
you were typing the commands in from the keyboard. You should use a script file whenever you are
experimenting in Matlab- it makes life a lot easier!

• A function in Matlab is like a subroutine in programming. That is, once the function has been called,
all of its variables are local to that function- you cannot access them from the keyboard, and the
variables are erased once the function is finished.

Both scripts and functions should have the .m file extension. We’ll look at the difference in the Exercise
set below.

Exercise Set II

1. The following script file is an example of Newton’s method applied to a function f(x) = xex − cos(x).
Recall that Newton’s Method solves for x: f(x) = 0 by taking an initial guess, x0, and refines the
guess by:

xi+1 = xi −
f(xi)

f ′(xi)

x=0.2; %Initial guess for solution to f(x)=0

for k=1:5

y=x*exp(x)-cos(x);

dy=(x+1)*exp(x)+sin(x);

x=x-(y/dy)

end

Notes about the code:

• We see our first for loop. We’ll discuss what this does in class.

• Note the use of % to make comments.

• Note that x=x-(y/dy) does NOT have a semicolon at the end.

(a) Use the edit feature to type it in and save it as newton1.m

(b) Run the code after you’ve saved it by typing newton1 in the command window.

(c) Write down Matlab’s output.

(d) To see more significant digits, type format long

(e) Type whos and write down Matlab’s answer.

Before continuing, clear the memory by typing clear

2. Now we’ll change the script file into a Matlab function: Edit the file we created earlier as newton1.m

so that it looks like this:

function [z,y,dy]=newton2(x,n)

%FUNCTION [y,dy]=newton2(x,n)

% performs Newton’s Method on x*exp(x)-cos(x)

% using initial value x and n iterations.

% The output z gives the refined solution,

% the output y gives the function values and dy

% the corresponding derivatives.
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for k=1:n

y(k) = x*exp(x)-cos(x);

dy(k) = (x+1)*exp(x)+sin(x);

z(k) = x-(y(k)/dy(k));

x = z(k);

end

Now save the file as newton2.m. In the command window, type help newton2. You should see the help
lines come up. Now run the function by typing in the command window: [x,y,z]=newton2(0.2,5);

3. Let x be a row. What happens if you type plot(x)?

4. Let A be a 4× 3 matrix. What happens if you type plot(A)? Compare this with plot(A’).

5. Write a Matlab command to plot y = e5x, where −2 ≤ x ≤ 2 using 30 points. Plot both the curve and
the actual data points themselves, both in magenta.

6. Write a Matlab function to plot y = sin(x) in red, y = sin(2x) in black, and y = sin(3x) in green, all
on the same plot. You can assume that x ∈ [−4, 8].

7. When we compute with numbers, some errors can occur. Try typing each of the following into Matlab,
and see what happens:

• 1/0 (Think about what this means before trying it!)

• -1/0

• 0/0

• 1/Inf

These give us some extensions to arithmetic- Matlab has ways of dealing with infinity (Inf) and
“Not-A-Number” (NaN).

8. Try to reason out what you think Matlab will do with each of the following, then type it in and record
what you get:

x=[1 3 2 1 3];

max(x)

find(x==max(x))

sort(x)

mean(x)

sum(x)
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Appendix B

The Derivative

B.1 The Derivative of f

In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how
the derivative appears for functions whose domain is IRn and whose range is IRm, for any m,n. We begin
by reviewing the definitions found in Calculus:

B.1.1 Mappings from IR to IR

Definition: Let f : IR→ IR. Then define

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

We interpret this quantity as the slope of the tangent line at a given x, or as the velocity at time x. Given
this definition, we can give a local linear approximation of a nonlinear function f at x = a:

L(x) = f(a) + f ′(a)(x− a)

which is simply the equation of the tangent line to f at x = a. For comparison purposes, note that the
graph of this function is in IR2, and if u = x−a, v = f(x)−f(a), this function behaves as the linear function
v = f ′(a)u.

Furthermore, we know the basic Taylor series expansion about x = a is an extension of the linearization:

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + . . .+

f (k)(a)

k!
(x− a)k + . . .

We have also seen the derivative when f has some different forms:

B.1.2 Mappings from IR to IRn (Parametrized Curves)

Definition: Let f : IR→ IRn via:

f(t) =



f1(t)

f2(t)

...

fn(t)


so that f ′(t) =



f ′1(t)

f ′2(t)

...

f ′n(t)
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We normally think of the graph of f as a parameterized curve, and we differentiate (and integrate) component-
wise. In this case, the linearization of f at x = a is a matrix (n× 1) mapping:

L(x) = f(a) + f ′(a)(x− a)

which takes a scalar x and maps it to a vector starting at f(a) and moves it in the direction of f ′(a). The
graph of this function lies in IRn+1. If u = x− a, v = f(x)− f(a), this function behaves like: v = f ′(a)u

In differential equations, we considered functions of this form when we looked at systems of differential
equations. For example,

ẋ(t) = Ax(t)

In this case, the origin is a critical point (fixed point), and we were able to classify the origin according to
what the eigenvalues of A were (i.e., positive/negative, complex).

In the more general setting, we also considered the form: ẋ = f(x) In this setting, f : IRn → IRn, which
we look at in the last section.

B.1.3 Mappings from IRn to IR: Surfaces

Definition: Let f : IRn → IR. Then the derivative in this case is the gradient of f :

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
where

∂f

∂xi
= lim
h→0

1

h
f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xi, . . . , xn)

and measures the rate of change in the direction of xi. The linearization of f at x = a is now a 1×n matrix
mapping:

L(x) = f(a) +∇f(a)(x− a)

The graph of this function lies in IRn+1, and if u = x− a, v = f(x)− f(a), then this function behaves like:
v = ∇f(a)u.

We use the gradient to measure the rate of change of f in the direction of a unit-length vector u by
computing the directional derivative of f at a:

Duf = ∇f(a) · u

In the exercises, you are asked to verify that the direction u of fastest increase is in the direction of the
gradient.

Geometrically, suppose we are looking at the contours of a function, y = f(x1, . . . , xn): That is, we plot
k = f(x1, . . . , xn) for different values of k. Since a contour line is where f is constant, the gradient in the
direction of the contour is zero. On the other hand, a vector in the direction of the gradient is orthogonal
to the contour, and is the direction of fastest increase.

For example, consider f(x, y) = x2 +2y2. Its gradient is ∇f = [2x, 4y]. At the point x = 0.5, y = 0.5, the
gradient vector is ∇f(0.5, 0.5) = [1, 2]. In Figure B.1, we plot several contours of f , including the contour
going through the point (0.5, 0.5). Next, we plot several unit vectors emanating from that point, alongside
of which we show the numerical values of the corresponding directional derivatives.

From this, we verify that the direction of maximum increase is in the direction of the gradient, the
gradient is orthogonal to the direction tangent to the contour, and the direction of fastest decrease is the
negative of the gradient.

This particular class of functions is especially important to us, since:

• Learning can be thought of as the process of minimizing error.

• All error functions can be cast as functions from IRn to IR.

But, before going into the details, let us finish our comparisons of the derivative.
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Figure B.1: The plot shows several contours of the function f(x, y) = x2 + 2y2, with the contour values
listed vertically down the center of the plot. We also show several unit vectors emanating from the point
(0.5, 0.5), with their associated directional derivative values.
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B.1.4 Mappings from IRn to IRm

The last, most general, class of function is the function that goes from IRn to IRm. Such a function can
always be defined coordinate-wise:

Definition: If f : IRn → IRm, then f can be written as:

f(x) =



f1(x1, . . . , xn)

f2(x1, . . . , xn)

...

fm(x1, . . . , xn)


where each of the f i are mapping IRn to IR. So, for example, a mapping of IR2 to IR3 might look like:

f(x) =


x1 + x2

cos(x1)

x1x2 + ex1


In this case, the derivative of f has a special name: The Jacobian of f :

Definition: Let f : IRn → IRm. Then the Jacobian of f at x is the m× n matrix:

Df =



∇f1

∇f2

...

∇fm


=



f1
1 f1

2 . . . f1
n

f2
1 f2

2 . . . f2
n

...
...

fm1 fm2 . . . fmn


with f ij = ∂fi

∂xj
. You should look this over- it is consistent with all of our previous definitions of the derivative.

The linearization of f at x = a is the affine map:

L(x) = f(a) +Df(a)(x− a)

The graph of this function is in IRn+m, and if u = x− a, v = f(x)− f(a), then this function behaves like:
v = Df(a)u.

B.2 Worked Examples:

Find the linearization of the given function at the given value of a:

1. f(x) = 3x2 + 4, x = 2

2. f(t) = (3t2 + 4, sin(t))T , t = π

3. f(x) = 3x1x2 + x2
1,x = (0, 1)T

4. f(x) = (x1 + x2, cos(x1), x1x2 + ex1)T ,x = (0, 1)T

SOLUTIONS:
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1. f(2) = 16, f ′(x) = 6x, so f ′(2) = 12. Thus,

L(x) = 16 + 12(x− 2)

Locally, this function is like: v = 12u.

2. f(π) = (3π2 + 4, 0)T , f ′(t) = (6t, cos(t))T , f ′(π) = (6π,−1)T

L(x) =

 3π2 + 4

0

+

 6π

−1

 (x− π)

Locally, this means that f multiplies x by 6π in the first coordinate direction, and flips the second
coordinate.

3. f((0, 1)T ) = 0, ∇f = (3x2 + 2x1, 3x1), ∇f((0, 1)T ) = (3, 0)

L(x) = 0 + (3, 0)

 x1 − 0

x2 − 1


Locally (at (0, 1)T ), this means that f is increasing in the direction parallel to x1, and is constant in
the direction parallel to x2.

4.

f((0, 1)T ) = (1, 1, 1)T , Df =


1 1

− sin(x1) 0

x2 + ex1 x1

 , Df((0, 1)T ) =


1 1

0 0

2 0


So the linearization is:

L(x) =


1

1

1

+


1 1

0 0

2 0


 x1 − 0

x2 − 1



B.3 Optimality

When we talk about “optimizing” a function, that function is necessarily a function from IRn to IR, since
this is the only way that we can compare two outputs- that is, we need the range to be well-ordered. In this
section, we will therefore concentrate on this class of functions.

In Calculus, we had a second derivative test for determining if we had a local maximum/minimum. That
was:

Let f be differentiable, and f ′(a) = 0. If f ′′(a) > 0, then f has a local minimum at x = a. If
f ′′(a) < 0, then f has a local maximum at x = a. If f ′′(a) = 0, this test is inconclusive.

We can do something similar for higher dimensions:
Definition: Let f : IRn → R. Then the Hessian of f is the n× n matrix:

Hf =



f11 f12 . . . f1n

f21 f22 . . . f2n

...
...

fn1 fn2 . . . fnn
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where fij = ∂2f
∂xi∂xj

, and so Hf is the matrix of all the second partial derivatives, and takes the place of the

second derivative.

We might recall Clairaut’s Theorem: If fij , fji are continuous in a ball containing x = a, then fij(a) =
fji(a). In this case, the Hessian is a symmetric matrix at x = a. This will have some consequences that
we’ll discuss after The Spectral Theorem.

Example: If f(x1, x2) = 3x2
1 + 2x1x2 + x2

2 − 3x2 + 4,

∇f = [6x1 + 2x2, 2x1 + 2x2 − 3]

and

Hf =

 6 2

2 2


As in the case of the directional derivative, we can also check the second derivative in the direction of u

by computing:

uTHf(a)u

uTu
or, if we use a unit vector, uTHf(a)u

In Calc I, we said that, if a is a stationary point, then we can check to see if f ′′(a) > 0 to see if x = a is
a local minimum. How does that translate to the Hessian?

Definition: The matrix A is said to be positive definite if xTAx > 0 for all x 6= 0. A weaker statement
is to say that A is positive semidefinite, where in this case, xTAx ≥ 0 for x 6= 0. Compare this computation
to was we said was the second derivative in the direction of u.

Example: Any diagonal matrix with positive values along the diagonal is a positive definite matrix. As
a specific example, consider:

[x, y]

 2 0

0 5

 x

y

 = [x, y]

 2x

5y

 = 2x2 + 5y2

which is only zero if x = y = 0.

Example: If a matrix A has all positive eigenvalues, it is positive definite. We’ll go through this in
more detail in the section on linear algebra, but heuristically, you might imagine that the proof will use a
diagonalization of A so that we’re back to the previous example.

Let us consider the quadratic function in detail, as we will use this as a model for non-quadratic functions.

Let F (x) = 1
2x

TAx+ bTx+ c, where A is symmetric and b, c are constants. Then

∇F (x) = Ax+ b

If we assume A is invertible, then the stationary point of F :

x = −A−1b

and the Hessian does not depend on this value:

HF = A

So, ifA is positive definite, the stationary point holds the unique minimum of F . Compare these computations
to those we do in Calc I:

y =
1

2
ax2 + bx+ c
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B.3.1 Necessary and Sufficient Conditions

Theorem: If f attains its local minimum (maximum) at x = a, then ∇f(a) = 0. The vector a is called a
stationary point of f .

This is just the multidimensional version of Fermat’s Theorem from Calculus I- we require all partial
derivatives to vanish if we are at a local maximum or minimum.

Theorem: Necessary and Sufficient Conditions for Extrema

• First Order Condition: A necessary condition for f : IRn → IR to have a local minimum (maximum)
at x = a is that a is a stationary point.

• Second Order Condition: Let x = a be a stationary point. Then a necessary condition for f to have
a local minimum (maximum) at x = a is that Hf(a) is positive semidefinite (negative semidefinite).

A sufficient condition for a minimum (maximum) is that Hf(a) is positive definite (negative definite).

We saw that the minimum was easy to compute if the function f was in a special form. We can force
our function to have the quadratic form by appealing to the Taylor expansion.

Taylor’s Theorem: Let f : IRn → IR be analytic (That is, we’ll assume all derivatives are continuous).
Then the Taylor’s series for f at x = a is:

f(x) = f(a) +∇f(a)(x− a) +
1

2
(x− a)THf(a)(x− a) + h.o.t.

where h.o.t. stands for “higher order terms”. Recall that ∇f(a) is an 1× n vector, and Hf(a) is an n× n
symmetric matrix.

We will only compute Taylor’s expansion up to second order, but for the sake of completeness (and your
amusement!), we give the definition of the full Taylor expansion below.

In order to understand the notation, think about all the different partial derivatives we will have to
compute. For example, if f depends on x, y, z, then there are 3 first partials, 9 second partials, 27 third
partials, etc. Thus, we need a way of organizing all of these. Probably the best way to do this is with the
following notation:

fi1i2...ik =
∂kf

∂xi1∂xi2 . . . ∂xik

so the indices i1, i2, . . . , ik are some permutation of the indices of x taken k at a time. Now we’re ready to
go!

The Taylor series expansion for f at x = a, where x ∈ IRn is given by:

f(x) = f(a) +

n∑
i=1

fi(a)(xi − ai) +
1

2!

n∑
i1=1

n∑
i2=1

fi1i2(a)(xi1 − ai1)(xi2 − ai2)+

. . .+
1

k!

n∑
i1=1

. . .

n∑
ik=1

fi1i2...ik(a)(xi1 − ai1) · · · (xik − aik) + . . .

B.4 Worked Examples

1. Compute the (full) Taylor series expansion for

f(x, y) = x2 + 2xy + 3y2 + xy2

at (1, 1).

2. Suppose we have a function f so that f((0, 1)) = 3, and ∇f((0, 1)) = [1,−2]. Use the linear approxi-
mation to f to get an approximation to f((0.5, 1.5)).
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3. Let f(x, y) = xy+ y2. At the point (2, 1), in which direction is f increasing the fastest? How fast is it
changing?

4. Suppose A =

 2 1

0 −1

. Show that A is neither positive definite or negative definite by finding an

x so that xTAx > 0, and another x so that xTAx < 0.

SOLUTIONS TO THE WORKED EXAMPLES:

1. First we see that f is a third degree polynomial (because of the xy2 term). Therefore, we will need to
compute the partial derivatives up to the third partials:

fx = 2x+ 2y + y2, fy = 2x+ 6y + 2xy

so at x = 1, y = 1 : fx = 5, fy = 10

fxx = 2, fxy = fyx = 2 + 2y = 4, fyy = 6 + 2x = 8

fxxy = 0 fxxx = 0 fxyx = 0 fxyy = 2

fyxx = 0 fyxy = 2 fyyx = 2 fyyy = 0

Now we get that:

f(x) = 7 + 5(x− 1) + 10(y − 1) +
2

2
(x− 1)2 +

8

2
(x− 1)(y − 1)+

8

2
(y − 1)2 +

6

6
(x− 1)(y − 1)2

Note that the coefficient for (x−1)(y−1) came from both fxy and fyx, and Note that the (x−1)(y−1)2

coefficient came from all three partials: fxyy, fyxy and fyyx.

2. The linearization of f :

f(x, y) = 3 + [1,−2]

 x

y

 = 3 + x− 2y

so f(0.5, 1.5) is approximately 3 + 0.5− 3 = 0.5.

3. The gradient is [y, x+ 2y], so at (2, 1), we get [1, 4]. The direction in which f is increasing the fastest
is in the direction of [1, 4]T , and the rate of change in that direction is

√
17.

4. We see that xTAx = 2x2 + xy − y2, so we can choose, for example, x = 0, y = 1 for a negative value,
and x = 1, y = 0 for a positive.

B.5 Exercises

1. Let f(x, y) = x2y + 3y. Compute the linearization of f at x = 1, y = 1.

2. Let

f(x, y, z, w) =


x+ zw − w2

4− 3xy − z2

exyzw

x2 + y2 − 2xyw


Compute the linearization of f at (1, 2, 3, 0)T .

178



3. Definition: Let f : IRn → IR. The Directional Derivative of f in the direction of the vector u is given
by:

Duf = ∇f · u

which is the dot product of the gradient with the vector u . We interpret this quantity (which is a
scalar) as “The rate of change of f in the direction of u”.

(a) What does the directional derivative give if u = e(i), the ith standard basis vector?

(b) Consider f at some fixed value, x = a. Over all possible unit vectors u, in which direction will
f have it’s maximum (minimum) rate of change? Hint: Think about how we can write the dot
product in terms of cos(θ), for an appropriate θ.

4. Let x be the variable, A, b be a constant matrix, vector respectively. Show that:

(a) Dx = I

(b) ∇
(
xTx

)
= 2x

(c) ∇
(
bTx

)
= b

(d) D(Ax) = A

5. Show that, if u,v are vector-valued functions from IRn → IRn, then:

∇
(
uTv

)
= (Du)

T
v + (Dv)

T
u

6. Use the previous exercises to show that, if G is a symmetric matrix, then ∇
(

1
2x

TGx
)

= Gx.

7. Multiply the following expression out to its scalar representation:

[x, y]

 a b

c d

 x

y


Use this result to write: 5x2 − xy + 6y2 as xTAx, for a suitable matrix A.

8. Let f(x, y) = 3x2 + xy − y2 + 3x− 5y.

(a) At the point (1, 1), in which direction is f increasing the fastest? Decreasing the fastest? What
is its rate of change in the fastest direction?

(b) Compute the Hessian of f .

(c) Rewrite f in the form: 1
2x

TAx+ bTx, for a suitable matrix A and vector b.

(d) Find the stationary point of f using our previous formula, and verify that the gradient is zero
there. Show that we do not have a minimum or a maximum at the stationary point.
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Appendix D

Matlab and Radial Basis Functions

The purpose of this chapter is to demonstrate the Matlab1 implementation of the radial basis function solver.
This will be worthwhile in two respects. We first see how the orthogonal least squares algorithm is extended
to the multidimensional case, and also will learn some of Matlab’s vectorization techniques.

If we have p centers, m points of dimension n as input data, and m points of dimension k for output
data, then the training the RBF network is equivalent to solving the following equation for A:

ΦA = Y (D.1)

where Φi,j is the φ acting on the ith data point using the jth center:

Φi,j = φ(‖xi − cj‖)

so that Φ has dimensions m by p.
The matrix values in A are the unknown coefficients, specifically, Ai,j is the coefficient for the ith center,

jth dimension, αji , so that A has dimensions p by k.
Finally, Y is the target matrix, with dimensions m by k.

The Solution to the RBF Equation

Given the transfer function φ and a list of centers, ci, then the solution to Equation (D.1) is:

A = Φ+Y

where Φ+ is the Moore-Penrose pseudoinverse. There are several methods available to solve for the pseu-
doinverse of a matrix. Two methods implementable in Matlab are given below:

1. The “pinv” command:
Φ+ = pinv(Φ)

2. The Singular Value Decomposition, Case I: Φ is full rank.

Let Φ be m by p. Then the reduced singular value decomposition of Φ is given by:

Φ = USV T

which in Matlab is produced by the command:

[U, S, V ] = svd(Φ, 0)

1Matlab is the property of Mathworks, Inc. The algorithms presented here are written by Mark Beale and are copyrighted
by Mathworks.
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where U is an m by p unitary matrix (UTU = I), V is an p by p unitary matrix, and S is an p by p
diagonal matrix:

S =


σ1 0 . . . 0

0 σ2 . . . 0

0
... . . .

...

0 . . . σp

 S−1 =



1
σ1

0 . . . 0

0 1
σ2

. . . 0

0
... . . .

...

0 . . . 1
σp


The pseudoinverse of Φ is then:

Φ+ = V S−1UT

In this case, either “pinv” or this SVD routine gives adequate numerical values. The special case is
when Φ is NOT full rank.

3. Singular Value Decomposition, Case II: Φ is not full rank.

In this case, S only has k non-zero singular values (or in practice, only k values above a “noise floor”).
We note that the Matlab SVD routine returns singular values in descending order, so that the largest
singular value is σ1. Therefore, S has a diagonal k by k submatrix, and the rest of the matrix should
be set to 0.

If Φ is not full rank, then the “pinv” command has a default to choose the rank. This is why the
singular value decomposition is sometimes preferable; you directly choose the values for which σi = 0.
Once the noise floor cutoff has been determined, set k equal to the number of singular values above
the cutoff. Then the psuedo inverse is given by (I’m using Matlab notation here):

Φ+ = V (:, 1 : k) ∗ S−1(1 : k, 1 : k) ∗ U(:, 1 : k)′

So the idea is that once the transfer function is chosen and the appropriate centers are found, then
training the Radial Basis Function Network is just computing the pseudoinverse Φ.

Current Matlab Implementation

The following discusses the suite of commands that Matlab currently uses to solve the interpolation problem
given the centers. Note that this is not the solverb routine, which finds the centers.

First, the Matlab implementation is transposed from our original setup. That is,

ΦÃ = Ỹ ⇒ AP = Y

Furthermore, the interpolation matrix is appended with a column (for Φ, or a row for P ):

Φ⇒

Φ|


1

...

1




In Matlab, let M by N be the size of P:

P = [P;ones(1,N)]

and the matrix A is split into two pieces:

A=[w2 b2]
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The following commands mimic the approximation to Y :

a2 = ( Y / P) * P;

In solverb, we see the following suite of commands:

• Construct P using radbas. The constant b is for the Gaussian:

P=radbas(dist(p’,p)*b)

• Find the matrix A:

[w2,b2]=solvelin(P,Y);

• Construct the approximation to Y :

a2=purelin(w2*P,b2);

We now discuss the issues associated with Radial Basis Function interpolation: Finding a suitable transfer
function and finding suitable centers.

Choosing the Centers

In a lot of research work, centers are chosen randomly from the data. It is also possible to perform clustering
on the data, then choose centers from the clusters (a.k.a. codebook vectors). This method is not optimized
for this purpose, however, and can be computationally expensive.

For many applications, randomly choosing the centers may be sufficient. In what follows, we apply
a method known as Orthogonal Least Squares to choose the centers from the data. This algorithm is
implemented in the Matlab routine ”solverb”, which is also discussed below.

The Matlab Implementation

We now discuss the Matlab implementation of this algorithm. Keep in mind that the default number of
centers in ”solverb” is the number of data points. This can cause some problems since the first iterate of the
interpolation matrix has dimensions Number of points by Number of points!

Again, denote the interpolation matrix by its columns:

Φ = [Φ1, . . . ,Φp], Φi ∈ IRn

which in Matlab will be denoted by P , and the output matrix, Y in terms of its rows:

Y T =


yT

1

...

yT
n

 = [d1, . . . ,dk] = d

So that yi ∈ IRk, and di ∈ IRn.
We are now ready to construct the algorithm. Key is the computation of error:

(ΦT
k dj)

2

dT
j djΦ

T
kΦk

(D.2)

which again is called the error associated with using the kth column of Φ for the jth data point.
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Remark. First, we construct the matrix of elements for the denominator:

Let

PP =


ΦT

1 Φ1

...

ΦT
mΦm

 = sum(P. ∗ P′)′

and

dd =


dT

1 d1

...

dT
k dk

 = sum(d. ∗ d)′

Now the matrix of elements needed for the denominators of the error calculation in Equation (D.2) is:

dd ∗ PP′ =


dT

1 d1

...

dT
k dk

(ΦT
1 Φ1 . . .Φ

T
mΦm

)

The (j, k)th element of this matrix is given by:

dT
j djΦ

T
kΦk

Remark. We now construct a matrix that has the numerator elements from Equation (D.2).

First, note that: 
ΦT

1

...

ΦT
m

 (d1, . . . ,dk) = ΦTd = P′ ∗ d

so that, in Matlab, the (j, k)th component of

((P’*d)’.^2)

is the numerator we needed: (
ΦT
k dj
)2

In conclusion, we construct the error value in Equation (D.2) by computing:

( (P’*d)’.^2 ) ./ (dd * PP’)

Other Matlab ”Tricks”

1. Truncate the Matrix X by removing the kth column:

X(:,k)=[];

2. This also works to remove elements from a vector:

x(k)=[];
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3. Increase the Matrix X by adding the kth column of Y :

X=[X, Y(:,k)];

4. And the vector version of adding an element of y to a vector x:

x=[x y(k)]

5. Construct a matrix X by using the odd columns (1-5) of Y :

I=1:2:5

X=Y(:,I);

6. For projections, if we would like to remove the component along a vector wj from the column space of
matrix P :

a=wj’*P/(wj’*wj);

P=P-wj*a;
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