
Exam 1 Review Solutions (Spr 25)

Be sure to read over and understand the solutions to quiz as well as the review sheets.

1. Given data {x1, . . . , xn}

� Sample mean: x̄ =
1

n

n∑
i=1

xi

� Sample variance: s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

� Given a second data set {y1, y2, . . . , yp} (note that order matters), then

Covariance:
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

And this is a scaled dot product between these two “vectors” of mean sub-
tracted data:

1

n− 1
(x− x̄) · (y − ȳ)

Correlation: Scaled covariance (scaled so that the two vectors have unit size):∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

(Notice that the 1/(n− 1) term cancels top and bottom). Given two vectors
of mean-subtracted data, this reduces to:

(x− x̄) · (y − ȳ)

‖x− x̄‖ ‖y − ȳ‖
= cos(θ)

where θ is the angle between the vectors x− x̄ and y − ȳ.

2. For the covariance matrix, if we have n dimensional data, then the covariance matrix
is n × n, where the (i, j)th entry is the covariance between the p values in dimension
i against the p values in dimension j. If X is n × p, then these vectors are stored as
the rows of X. Be sure to mean subtract the matrix first (in this case, the mean is
a column in IRn). If we define X̂ as the mean-subtracted matrix, then the covariance
matrix is given as

C =
1

p− 1
X̂X̂T

We would note that it is possible that the matrix X is p × n, where the data in
dimension i is the ith column. In that case, the mean would be a row vector. Define
X̂ as the mean-subtracted matrix, and then the covariance is

C =
1

p− 1
X̂T X̂

In both cases, C is n × n, so you can see that it’s important to pay attention to the
dimensions of objects you’re working with!
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3. Find the orthogonal projection of the vector x = [1, 0, 2]T to the plane defined by:

G =

α1

 1
3
−2

+ α2

 3
−1
0

 such that α1, α2 ∈ IR


Determine the distance from x to the plane G.

SOLUTION: Let the vectors for G be denoted by u1,u2 (and notice that these are
orthogonal to each other). Let x̂ be the projection to G:

x̂ =
u1 · x
u1 · u1

u1 +
u2 · x
u2 · u2

u2 = − 3

14
u1 +

3

10
u2 ≈

 0.6857
−0.9429

0.4286


The distance to the plane is ‖x− x̂‖, which in this case is approximately 1.8593.

(NOTE: On an exam, the numbers would come out in a way that you could do them
by hand. In this example, note what computations we made, but the arithmetic on
the exam would work out nicer.)

4. If [x]B = (3,−1)T , and B =


 1

0
1

 ,
 3

1
1


, what was x (in the standard basis)?

SOLUTION:

x = 3b1 − b2 =

 0
−1

2



5. If x = (3,−1)T , and B =

{[
6
1

]
,

[
1
−2

]}
, what is [x]B?

SOLUTION: In this case, we have to compute the coordinates- That is, we have to
solve the system: [

6 1
1 −2

] [
c1
c2

]
=

[
3
−1

]
Solving it is easiest if you happen to recall the formula for inverting a 2 × 2 matrix,
but if you don’t, you can also construct the appropriate augmented matrix and row
reduce:

c = − 1

13

[
−2 −1
−1 6

] [
3
−1

]
=

[
5/13
9/13

]

(NOTE: I’ll try to make the arithmetic work out nicely on the exam- the important
point is to recall what operations to perform).
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6. Let a = [1, 3]T . Find a square matrix A so that Ax is the orthogonal projection of x
onto the span of a.

SOLUTION:

A =
aaT

aTa
=

1

10

[
1 3
3 9

]
Check:

Ax =
aaT

aTa
x =

1

aTa
a(aTx) =

aTx

aTa
a

7. Determine the projection matrix that takes a vector x and outputs the projection of
x onto the plane whose normal vector is [1, 1, 1]T .

SOLUTION: First, we should note that the plane needs to go through the origin
before we can consider it a two dimensional subspace (otherwise, we would need more
information). With that, there are a couple of ways to compute this- One way is
that we need a spanning set for the plane. The plane is the set of (x, y, z) such that
x+y+z = 0, which is a linear system that we can solve. In fact, the “matrix”: [1 1 1|0]
is alread in RREF.

Solving the system, we have two free variables, y, z, and we solve the system as usual.
Put the two vectors as columns in a matrix A:

x = −y −z
y = y
z = z

⇒ A =

 −1 −1
1 0
0 1


Now the projection matrix is:

P = A(ATA)−1AT

which can be computed as (you can leave it unsimplified): −1 −1
1 0
0 1

 [ 2/3 −2/3
−1/3 2/3

] [
−1 1 0
−1 0 1

]

8. Find (by hand) the eigenvectors and eigenvalues of the matrix A:

(a) A =

[
5 −1
3 1

]
The characteristic equation is λ2 − 6λ+ 8 = 0, so λ = 2, 4.

For λ = 2, we solve (5− 2)v1 − v2 = 0, and so we use

v =

[
1
3

]
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Similarly, for λ = 4, we solve (5− 4)v1 − v2 = 0, so we use

v =

[
1
1

]

(Note: The “shortcut” for finding v only works here because our matrix A is 2×2.
Otherwise, we would have to row reduce the matrix A− λI).

(b) A =

[
−2 1
1 −2

]
The characteristic equation is λ2 + 4λ+ 3 = 0, so λ = −1,−3.

For λ = −1, we solve (−2 + 1)v1 + v2 = 0, and so we use

v =

[
1
1

]

Similarly, for λ = −3, we solve (−2 + 3)v1 + v2 = 0, so we use

v =

[
−1

1

]

(Note: The “shortcut” for finding v only works here because our matrix A is 2×2.
Otherwise, we would have to row reduce the matrix A− λI).

9. (Referring to the previous exercise) We could’ve predicted that the eigenvalues of the
second matrix would be real, and that the eigenvectors would be orthogonal. Why?

SOLUTION: The second matrix is symmetric, so by the Spectral Decomposition The-
orem, it has two real eigenvalues and orthogonal eigenvectors.

10. Compute the SVD of the matrix A, and the pseudoinverse of A, given the matrix
below:

A =

 1 0
2 0
0 0


SOLUTION: A couple of matrix computations first:

ATA =

[
5 0
0 0

]
AAT =

 1 2 0
2 4 0
0 0 0


From this, we see that λ1 = 5, so σ1 =

√
5, and the remaining singular values (and

eigenvalues) are 0. The eigenvector for λ = 5 in ATA is (1, 0) The (unscaled) corre-
sponding eigenvector of AAT is given by

Av1 =

 1 0
2 0
0 0

 [ 1
0

]
=

 1
2
0

 ⇒ u1 =
1√
5

 1
2
0


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Now, the other eigenvector v2 is orthogonal to v1, so we’ll take it as (0, 1). The
eigenspace of AAT for λ = 0 will be two dimensional, so to find a basis for that, we
row reduce AAT − λI, which is just AAT . That’s easy:

AAT =

 1 2 0
2 4 0
0 0 0

 →

 1 2 0
0 0 0
0 0 0

 →
x1 = −2x2
x2 = x2
x3 = x3

→

 −2
1
0

 ,
 0

0
1


Therefore, the full SVD is given by: 1 0

2 0
0 0

 = UΣV T =

 1/
√

5 −2
√

5 0

2/
√

5 1
√

5 0
0 0 1



√

5 0
0 0
0 0

 [ 1 0
0 1

]T

Remember that the pseudoinverse uses the reduced SVD, so it will be:

A† = V (:, 1)Σ−1(1, 1)U(:, 1)T =

[
1
0

]
1√
5

[
1/
√

5 2/
√

5 0
]

=

[
1/5 2/5 0

0 0 0

]

11. Compute the orthogonal projector to the span of x, if x = [1, 1, 1]T .

SOLUTION:

P =
xx′

x′x
=

1

3

 1 1 1
1 1 1
1 1 1


12. Let

U =
1√
2

 1 −1
1 1
0 0

 , x =

 1
3
2


Find [x]U . Find the projection of x into the subspace spanned by the columns of U .
Find the distance between x and the subspace spanned by the columns of U .

SOLUTI)ON:

� The first part of the question is incorrect. It asks for the coordinates of x with
respect to the columns of U , but x is not contained in the columnspace of U
(notice that the two columns both have zero in the third spot, but x does not).

What was meant was that we want to find the coordinates of the projection of x
into the columnspace of U . In that case,

[Proj(x)]U = UTx =

[
4/
√

2

2/
√

2

]

� The projection of x into the columnspace of U is given by UUTx, or (1, 3, 0).
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� The distance between x and its projection is easy to compute this time: ‖x −
(1, 3, 0)‖ = ‖(0, 0, 2)‖ = 2

13. Show that Null(A) ⊥ Row(A).

Let x be any vector in the null space. We will show that the dot product between x
and any row of A is zero.

Consider Ax in terms of the rows of A, so let ri be the ith row of A. Then, assuming
A is m× n,

Ax =


r1

r2
...

rm

x =


r1 · x
r2 · x

...
rm · x

 = ~0

Therefore, the dot product of every row of A with x is 0, so every row is orthogonal
to x. Since x was arbitrary in the null space, then every row is orthogonal to every
element in the null space.

14. Show that, if X is invertible, then X−1AX and A have the same eigenvalues.

SOLUTION: One way to do this is using the determinants. If the matrices are square,
then det(AB) = det(A)det(B). Now,

det(X−1AX − λI) = det(X−1AX − λX−1X) = det(X−1(A− λI)X) =

det(X−1)det(A− λI)det(X) = det(A− λI)

Therefore, the characteristic equation for A and the characteristic equation for X−1AX
are the same (and so they have the same eigenvalues).

15. How do we “double-center” a matrix of data?

SOLUTION: There are a couple of different ways. One way: If a is a column vector
mean, b is a row vector mean, and c is the grand mean (the mean over all elements of
the matrix), then we double center by taking:

X − a− b+ c

16. True or False, and give a short reason:

(a) If the rank of A is 3, the dimension of the row space is 3.

True: The rank is the dimension of the column space, but that is always equal to
the dimension of the row space.

(b) If the correlation coefficient between two sets of data is 1, then the data sets are
the same.

False: A correlation coefficient of 1 means that the data is linearly related (there
is a linear relationship between the data).
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(c) If the correlation coefficient between two sets of data is 0, then there is no func-
tional relationship between the two sets of data.

False: A correlation of 0 means that there is no linear relationship between the
data (“uncorrelated”), but there could be a nonlinear relationship between the
data.

(d) If U is a 4× 2 matrix, then UTU = I.

With the added assumption that U has orthonormal columns, then “True”. Oth-
erwise, false. (As written, it would be false).

(e) If U is a 4× 2 matrix, then UUT = I.

False. If U has orthonormal columns, then UUT is the projection onto the column
space of U , which may not be I. Of course, if U doesn’t have o.n. columns, it
would be false.

(f) If A is not invertible, then λ = 0 is an eigenvalue of A.

With the added assumption that A is square, then this is true, since “A not
invertible” would mean that det(A− 0I) = 0.

(g) Let

A =

 1 0
1 1
2 0


Then the rank of AAT is 2.

True. The rank of A is the same as the rank of AAT (and ATA).

17. Let v1,v2, . . . ,vn be the normalized eigenvectors of ATA, where A is m× n.

(a) Show that if λi is a non-zero eigenvalue of ATA, then it is also a non-zero eigen-
value of AAT .

SOLUTION: If λi, vi is the eigenvalue/eigenvector pair for ATA, then by defini-
tion,

ATAvi = λivi

Multiply both sides by matrix A:

AATAvi = λiAvi ⇒ AATui = λiui

where ui = Avi. Therefore, λi is an eigenvalue of AAT .

(b) True or false? The eigenvectors form an orthogonal basis of IRn.

True. This is a result of the Spectral Theorem.

(c) Show that, if x ∈ IRn, then the ith coordinate of x (with respect to the eigenvector
basis) is xTvi.

SOLUTION: To show this directly, we can start with

x = c1v1 + c2v2 + . . .+ cnvn
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Now dot both sides with vi. By the last question, the eigenvectors are orthonor-
mal, so

x · vi = 0 + 0 + ci + 0 + . . .+ 0

which is what we wanted to show.

(d) Let α1, . . . , αn be the coordinates of x with respect to v1, . . . ,vn.

Show that
‖x‖2 = α2

1 + α2
2 + . . .+ α2

n

I’ll allow you to show it just using just two vectors, v1,v2.

TYPO: The RHS should be ‖x‖2. In that case,

‖x‖2 = x · x = (α1v1 + α2v2) · (α1v1 + α2v2)

Expanding this expression, vi · vj = 0 if i 6= j, so we’re just left with:

α2
1v1 · v1 + α2

2v2 · v2

so if we have orthonormal vectors, this reduces to α2
1 + α2

2.

(The general case is very similar).

(e) Show that Avi ⊥ Avj

SOLUTION: Show that the dot product is 0:

(Avi) · (Avj) = (Avi)
T (Avj) = vT

i A
TAvj = viλjvj = λjv

T
i vj = 0

(f) Show that Avi is an eigenvector of AAT .

SOLUTION: See part (a). Same argument.

18. Show that, for the line of best fit, the normal equations produce the same equations
as minimizing an appropriate error function. To be more specific, set the data as
(x1, t1), . . . , (xp, tp) and define the error function first. Minimize the error function to
find the system of equations in m, b. Show this system is the same you get using the
normal equations.

SOLUTION: This is repeating what we had done in class. I’m using ti for the ith

“target” rather than yi, but otherwise, this is straightforward.

We want to find m, b so that ti = mxi + b for each i = 1, 2, . . . , p. This gives an error
in m, b:

E(m, b) =
p∑

i=1

(ti − (mxi + b))2

Using calculus, we can take the partial derivatives of E with respect to m, b, and we
wind up with the solution to the normal equations.

∂E

∂m
=

p∑
i=1

2(ti − (mxi + b)))(−xi) = 0

8



Distribute the sum through to get:

m
p∑

i=1

x2i + b
p∑

i=1

xi =
p∑

i=1

xiti

Similarly,
∂E

∂b
=

p∑
i=1

2(ti − (mxi + b))(−1)

Distribute the sum through, and note that
∑p

i=1 1 = p so that

m
p∑

i=1

xi + bp =
p∑

i=1

ti

For the linear algebra version, let the design matrix A and the unknown vector c be
given by

A =


x1 1
x2 1

...
...

xp 1

 c =

[
m
b

]

Then we want to solve Ac = t. Multiplying both sides by AT , we get the normal
equation:

ATAc = AT t

Multiplying these out, we get the same system of equations as we did when setting the
partial derivatives equal to zero.

19. Given data:
x −1 0 1
y 2 1 1

(a) Give the matrix equation for the line of best fit.

SOLUTION:  −1 1
0 1
1 1

 [ m
b

]
=

 2
1
1


(b) Compute the normal equations.[

2 0
0 3

] [
m
b

]
=

[
−1

4

]

(c) Solve the normal equations for the slope and intercept.

m = −1/2, b = 4/3
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20. Use the data in Exercise (19) to find the parabola of best fit: y = ax2+bx+c. (NOTE:
Will you only get a least squares solution, or an actual solution to the appropriate
matrix equation?)

SOLUTION: The matrix equation is now: 1 −1 1
0 0 1
1 1 1


 a
b
c

 =

 2
1
1


This matrix is invertible, so we get an actual unique solution to this system. Inverting
the matrix, we get that

a = 1/2 b = −1/2 c = 1

21. Let x = [1, 2, 1]T . Find the matrix xxT , its eigenvalues, and eigenvectors. (Also, think
about what happens in the general case, where a matrix is defined by xxT ). HINT:
SVD

SOLUTION:

� The matrix xxT is

 1 2 1
2 4 2
1 2 1


� One eigenvector is x, since

(xxT )x = (xTx)x

so the corresponding eigenvalue is xTx = 6.

The other eigenvalues are zero, so we would just need to row reduce xxT , which
is easy to do: 1 2 1

2 4 2
1 2 1

 →

 1 2 1
0 0 0
0 0 0

 →
x1 = −2x2 −x3
x2 = x2
x3 = x3

→

 −2
1
0

 ,
 −1

0
1


These are the eigenvectors for λ = 0. You might notice that these are not or-
thogonal. If we were doing an SVD, then we would need to do Gram-Schmidt on
these two vectors to get an orthonormal set. However, you might also notice that
both vectors are orthogonal to the other eigenvector, (1, 2, 1).

22. Suppose x is a vector containing n real numbers, and we understand that mx + b is
Matlab-style notation (so we can add a vector to a scalar, done component-wise).

(a) Find the mean of y = mx + b in terms of the mean of x.

SOLUTION:
ȳ = mx̄ + b
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(b) Show that, for fixed constants a, b, Cov(x + a,y + b) = Cov(x,y)

SOLUTION:

Cov(x + a,y + b) =
1

n− 1

n∑
i=1

((x + a)− (x̄ + a))((y + b)− (ȳ + b)) =

1

n− 1

n∑
i=1

(x− x̄)(y − ȳ)) = Cov(x,y)

(c) If y = mx+ b, then find the covariance and correlation coefficient between x and
y.

SOLUTION:

sxy = Cov(x,mx + b) =
1

n− 1

n∑
i=1

((x− x̄)(mx + b)− (mx̄ + b)) =

m
1

n− 1

n∑
i=1

(x− x̄)2 = ms2x

For the correlation, first consider the variance of y:

s2y =
1

n− 1

n∑
i=1

((mx + b)− (mx̄ + b))2 = m2s2x ⇒ sy = |m|sx

rxy =
sxy
sxsy

=
ms2x

sx|m|sx
=

m

|m|
This expression is equal to 1 if m > 0 and −1 if m < 0 (it’s called signum(m)).

23. Suppose we have a subspace W spanned by an orthonormal set of non-zero vectors,
v1,v2,v3, each is in IR1000. If a vector x is in W , then there is a low dimensional (three
dimensional in fact) representation of x. What is it?

SOLUTION: The low dimensional representation is in IR3, and is given by the coordi-
nates of x:

[x]W = (x · v1,x · v2,x · v3)

24. Consider the underdetermined “system of equations”: x+3y+4z = 1. In matrix-vector
form Ax = b, write the matrix A first.

SOLUTION: A = [1 3 4].

Notation: Parenthesis will denote a column vector, like (1, 2) is the same as [1, 2]T .
This notation was also used in Lay’s linear algebra text.

(a) What is the dimension of each of the four fundamental subspaces?

SOLUTION: The rank of A is 1, so the dimension of the row space and column
space are both 1. The null space is therefore 2 dimensional, and the null space of
AT is zero dimensional.
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(b) Find bases for the four fundamental subspaces.

SOLUTION:

� Row space: {(1, 3, 4)}.
� Null space:

x = −3y −4z
y = y
z = z

⇒


 −3

1
0

 ,
 −4

0
1




� Column space: {1}
� Null space of AT (just the zero vector)

(c) Find a solution to the equation with at least 2 zeros.

x = 1, y = 0, z = 0

(d) Find a 3× 3 matrix P so that given a vector x, Px is the projection of x into the
row space of A.

SOLUTION: This is actually the projection onto a vector, since the column space
of A is the span of one vector (call it a)). Therefore,

P =
1

aTa
aaT =

1

12 + 32 + 42

 1 3 4
3 9 12
4 12 16


25. (SVD) Given that the SVD of a matrix was given in Matlab as:

>> [U,S,V]=svd(A)

U =

-0.4346 -0.3010 0.7745 0.3326 -0.1000

-0.1933 -0.3934 0.1103 -0.8886 -0.0777

0.5484 0.5071 0.6045 -0.2605 -0.0944

0.6715 -0.6841 0.0061 0.1770 -0.2231

0.1488 -0.1720 0.1502 -0.0217 0.9619

S =

5.72 0 0

0 2.89 0

0 0 0

0 0 0

0 0 0

V =

0.2321 -0.9483 0.2166

-0.2770 0.1490 0.9493

0.9324 0.2803 0.2281
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SOLUTION: Before answering, the size of A is the same as the size of S in the full
SVD, so A is 5× 3, and the mapping Ax goes from IR3 to IR5. Further, we see (from
S) that the rank of A is 2.

(a) Which columns form a basis for the null space of A? For the column space of A?

SOLUTION: The null space is in IR3, and is one dimensional- It is the last column
of V .

For the row space of A?

SOLUTION: The row space is in IR3, and a basis would use the first two columns
of V .

(b) How do we “normalize” the singular values? In this case, what are they (numer-
ically)?

SOLUTION: In class, we normalized the eigenvalues rather than the singular
values, but we could do the same thing to the singular values. That would be:

5.72

5.72 + 2.89
,

2.89

5.72 + 2.89

(c) What is the rank of A?

SOLUTION: The rank of A is 2.

(d) How would you compute the pseudo-inverse of A (do not actually do it):

Symbolically,
A† = V (:, 1 : 2)Σ−1(1 : 2, 1 : 2)U(:, 1 : 2)T

(e) Let B be formed using the first two columns of U . Would the matrix BTB have
any special meaning? Would BBT ?

SOLUTION: The matrix B would have orthonormal columns, so BTB = I2×2,
while BBT is the projection matrix for the column space of B.

26. In computing the best basis, what did we mean by “best”? (Be as specific as you can).

SOLUTION: “Best” can be described in two ways- Either

� The best one dimensional subspace is the subspace that maximizes the variance
of the projection. The next one dimensional subspace is found the same way, and
so on.

� The best k−dimensional basis is the one that minimizes the sum of the squares
of the magnitude of the reconstruction error.

27. Suppose we have p points in IRn,

{x1,x2, . . . ,xp}
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and we project each point to some (fixed) unit vector u. Show that the mean of the
scalar projections is the same as the projection of the mean vector.

SOLUTION: The scalar projections are:{
uTx1,u

Tx2, . . . ,u
Txp

}
so the mean of this data is:

1

p
uTxi = uT 1

p

p∑
i=1

xi = uT x̄

28. Continuing with the last problem, if we assume the mean of the data is zero, then show
that the variance of the scalar projections to the unit vector u is given by:

uT

(
1

p− 1

p∑
i=1

xix
T
i

)
u

Hint: Recall that with our assumption of the mean, you can write the sample variance

as
p∑

i=1

(uTxi)
2

SOLUTION: With this hint, it’s pretty straightforward if you see this:

(uTxi)
2 = uTxiu

Txi = uTxix
T
i u = uT (xix

T
i )u

Therefore, when you sum these together, you can factor uT out in front and u on the
right.

29. Suppose λ,v are the eigenvalue and (unit) eigenvector of the symmetric matrix C.
Simplify the expression: vTCv

SOLUTION: vTCv = λ

Continuing, if x = c1v1 + c2v2, where λ1,v1 and λ2,v2 are eigenvalue, unit eigenvector
pairs for the symmetric matrix C, show that

xTCx = λ1c
2
1 + λ2c

2
2

SOLUTION: Just expand the dot products, and the orthogonality of the vectors will
zero out most terms.
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