
An Introduction to Empirical Modeling

Douglas Robert Hundley
Mathematics Department

Whitman College

September 8, 2014

2

Contents

1 Basic Models, Discrete Systems 7
1.1 Introduction . 7
1.2 What Kinds of Models Are There? 8
1.3 Discrete Dynamical Systems . 11

2 A Case Study in Learning 19
2.1 A Case Study in Learning . 19
2.2 The n−Armed Bandit . 20

3 Statistics 33
3.1 Functions that Define Data . 33
3.2 The Mean, Median, and Mode 36
3.3 The Variance and Standard Deviation 39
3.4 The Covariance Matrix . 42
3.5 Exercises . 42
3.6 Linear Regression . 45
3.7 The Median-Median Line: . 48

4 Linear Algebra 51
4.1 Representation, Basis and Dimension 53
4.2 Special Mappings: The Projectors 56
4.3 The Four Fundamental Subspaces 59
4.4 Exercises . 61
4.5 The Decomposition Theorems . 63
4.6 Interactions Between Subspaces and the SVD 73

I Data Representations 77

5 The Best Basis 79
5.1 The Karhunen-Loéve Expansion 79
5.2 Exercises: Finding the Best Basis 80
5.3 Connections to the SVD . 83
5.4 Computation of the Rank . 84

3

4 CONTENTS

5.5 Matlab and the KL Expansion 85
5.6 The Details . 87
5.7 Sunspot Analysis, Part I . 89
5.8 Eigenfaces . 90
5.9 A Movie Data Example . 98

6 A Best Nonorthogonal Basis 101
6.1 Set up the Signal Separation Problem 102
6.2 Signal Separation of Voice Data 106
6.3 A Closer Look at the GSVD . 108

7 Local Basis and Dimension 111

8 Data Clustering 113
8.1 Background . 113
8.2 The LBG Algorithm . 117
8.3 K-means Clustering via SVD . 120
8.4 Kohonen’s Map . 120
8.5 Neural Gas . 126
8.6 Clustering and Local KL . 133
8.7 A Comparison of the Techniques 138

II Functional Representations 141

9 Linear Neural Networks 143
9.1 Introduction and Notation . 143
9.2 Training a Linear Net . 146
9.3 Time Series and Linear Networks 151
9.4 Script file: APPLIN2 . 153
9.5 Matlab Demonstration . 155
9.6 Summary . 155

10 Radial Basis Functions 157
10.1 The Process of Function Approximation 157
10.2 Using Polynomials to Build Functions 158
10.3 Distance Matrices . 163
10.4 Radial Basis Functions . 166
10.5 Orthogonal Least Squares . 174
10.6 Homework: Iris Classification . 178

11 Neural Networks 181
11.1 From Biology to Construction . 181
11.2 History and Discussion . 185
11.3 Training and Error . 187
11.4 Neural Networks and Matlab . 190
11.5 Post Training Analysis . 196

CONTENTS 5

11.6 Example: Alphabet recognition 199
11.7 Project 1: Mushroom Classification 200
11.8 Autoassociation Neural Networks 201

III Time and Space 205

12 Fourier Analysis 207
12.1 Introduction . 207
12.2 Implementation of the Fourier Transform 210
12.3 Applying the FFT . 216
12.4 Short Term Fourier and Windowing 225
12.5 Fourier and Biological Mechanisms 227
12.6 Chapter Summary . 228

13 Wavelets 229

14 Time Series Analysis 231

IV Appendices 233

A An Introduction to Matlab 235

B The Derivative 251
B.1 The Derivative of f . 251
B.2 Worked Examples: . 255
B.3 Optimality . 256
B.4 Worked Examples . 259
B.5 Exercises . 260

C Optimization 263

D Matlab and Radial Basis Functions 265

V Bibliography 271

VI Index 277

6 CONTENTS

Chapter 1

Basic Models, Discrete
Systems

1.1 Introduction

Mathematical modeling is the process by which we try to express physical pro-
cesses mathematically. In so doing, we need to keep some things in mind:

• What are our assumptions?

That is, what assumptions are absolutely necessary for us to emulate the
desired behavior? For example, we might be interested in the fluctuation
of a population. In that situation, we may or may not want to changes
based on seasonality.

• The model should be simple enough so that we can understand it. If a
model is so complicated as to defy understanding, then the model is not
useful.

• The model should be complex enough so that we capture the desired
behavior. The model should not be so simple that it does not explain
anything- again, such a model is not useful. This does not mean that we
need a lot of equations, however. One of the lessons of chaos theory1 is
the following:

Very simple models can create very complex behavior

• To put the previous two items into context, when we build a model, we
probably have some questions in mind that we’d like to answer. You can
evaluate your model by seeing if it gives you the answer- For example,

1For a general introduction to Chaos Theory, consider reading “Chaos”, by James Gleick.
For a mathematical introduction, see “An Introduction to Chaotic Dynamics”, by Robert
Devaney

7

8 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

– Should a stock be bought or sold?

– Is the earth becoming warmer?

– Does creating a law have a positive or negative social effect?

– What is the most valuable property in monopoly?

In this way, a model provides added value, and it is by this property that
we might evaluate the goodness of a model.

• Once a model has been built, it needs to be checked against reality- Mod-
eling is not a thought experiment! Of course, you would then go back to
your assumptions, and revise, create new experiments, and check again.

You might notice that we have used very subjective terms in our definition
of “modeling”- and these are an intrinsic part of the process. Some of the most
beautiful and insightful models are those that are elegant in their simplicity.
Most everyone knows the following model, which relates energy to mass and the
speed of light:

E = mc2

While it is simple, the model is also far-reaching in its implications (we will
not go into those here). Other models of observed behavior from physics are
so fundamental, we even call them physical “laws”- such as Newton’s Laws of
Motion.

In building mathematical models, you are allowed and encouraged to be cre-
ative. Explore and question your assumptions, explore your options for express-
ing those options mathematically, and most importantly, use your mathematical
background.

1.2 What Kinds of Models Are There?

There are many ways of classifying mathematical models, which will make sense
once you begin to build your own models. In general, we might consider the
following classes of models:

1.2.1 Deterministic vs. Stochastic

A stochastic model is one that uses random variation. To describe this random
variation properly, we will typically need ideas from statistics. An example:
Model the outcomes of a roll of dice. Stochastic models are characterized by
the introduction of statistics and probability. We won’t be doing a lot of this
in our course.

On the other hand, in a deterministic model, there is no randomness. As
an example, we might model the temperature of a cup of coffee as it varies
over time (a cooling model). Classically, the model would only involve the
temperature of the coffee and the temperature of the environment.

1.2. WHAT KINDS OF MODELS ARE THERE? 9

There may not be a clean division of categories here; it is common for some
models to incorporate both deterministic and stochastic parts. For example, a
model for a microphone may include a model for the voice (deterministic), and
a model for noise (stochastic).

It is interesting to consider the following: Does a deterministic model neces-
sarily produce results that are completely predictable through all time? Inter-
estingly, the answer is: Maybe yes, Maybe no. Yes, in the theoretical sense- we
might be able to show that there exists a single unique solution to our problem.
No, in the practical sense that we might not actually be able to compute that
solution. However, this does not mean that all is lost- we might have excellent
approximations over a short time span (think of the weather models on the
news).

1.2.2 Discrete vs. Continuous Time

In modeling an occurrence that depends on time, it might happen at discrete
steps in time (like interest on my credit card, or population), or in continuous
time (like the temperature at my desk).

Modeling in Discrete Time

Discrete time models usually index time as a subscript- For example, an or xn

will be the value of a or x at time step n.
Discrete time models can be defined recursively, like the following:

an+1 = an + an−1

In order to “solve” the system to produce a sequence, we would need to initialize
the problem. For example, if a0 = 1 and a1 = 1, then we can find all the other
elements of the sequence:

{1, 1, 2, 3, 5, 8, 13, · · · }

You might recognize this as the famous Fibonacci sequence.

General discrete models

There are a couple of fundamental assumptions being made in these discrete
models: (1) Time is indexed by the integers, and (2) The value of the process
at some time n+ 1 is a function of at most a finite number of previous states.

Mathematically, this means, given an and the L previous values of the state
a, then the next state at time n+ 1 is given by:

an+1 = f(an, an−1, . . . , an−L)

Or, rather than modeling the states directly, we might model how the state
changes in time:

an+1 − an = Δan = f(an−1, . . . , an−L)

10 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

In either event, we will be left with determining the form for the function f and
the length of the past, L. This form is called a difference equation.

We will work with both types of discrete models shortly. Before we do, let
us contrast these models with continuous time models.

Modeling in Continuous Time

We may model using Ordinary Differential Equations. In these models, we
are assuming that time passes continually, and that the rate of change of the
quantity of interest depends only on the quantity and current time. We capture
these assumptions by the following general model, where y(t) is the quantity of
interest.

dy

dt
= f(t, y)

Note that this says simply that the rate of change of the quantity y depends on
the time t and the current value of y.

Let us consider an example we’ve seen in Calculus: Suppose that we assume
that acceleration of a falling body is due only to the force of gravity (we’ll
measure it as feet/sec2). Then we may write:

y�� = −16

We can solve this for y(t) by antidifferentiation:

y� = −16t+ C1, y(t) = −8t2 + C1t+ C2

where C1, C2 are unknowns that are problem-specific. These simples models are
usually considered in a first course in ODEs.

To produce a more complex model, we might say that the rate of change
depends not only on the quantity now, but also the value of the quantity in the
past (for example, when regulating bodily functions the brain is reading values
that are from the past). Such a model may take the following form, where x(t)
denotes the quantity of interest (such as the amount of oxygen in the blood):

dx

dt
= f(x(t)) + g(x(t− τ))

This is called a delay differential equation. One of the most famous of these
models is the “Mackey-Glass” equation- You might look it up on the internet
to see what the solution looks like!

If our phenomena requires more than time, we have to model via Partial
Differential Equations. For example, it is common for a function u(t, x) to
depend both on time t and position x. Then a PDE may be:

∂u

∂t
= k

∂2u

∂x2

which might be interpreted to read: “The velocity of u at a particular time and
position is proportional to its second spatial derivative. Modeling with PDEs is
generally done in our Engineering Mathematics course.

1.3. DISCRETE DYNAMICAL SYSTEMS 11

1.2.3 Empirical vs. Analytical Modeling

“Empirical modeling” is modeling directly from data, rather than by some an-
alytic process. In this case, our assumptions may take the form of a “model
function” to which we will find unknown parameters. You’ve probably seen this
before in articles where the researcher is fitting a line to data- in this example,
we assume the model equation is given as y = mx + b, where m and b are the
unknown parameters.

We’ll finish this chapter with some analytical modeling using discrete dy-
namical systems (or, equivalently, discrete difference equations).

1.3 Discrete Dynamical Systems

The simplest type of dynamical system might be written in the following re-
currence form (recurrence because we’re writing the next value in terms of the
current value):

xn+1 = axn

where we would call x0 the initial condition. So, given x0, we could compute
the future values of the dynamical system:

x1 = ax0 x2 = ax1 = a2x0 x3 = ax2 = a3x0 · · ·

The set of values x1, x2, x3, . . . are called the orbit of x0. We also notice that
in this particular example, we were able to express xn in terms of x0. This is
called the closed form of the solution to the difference equation given. That
is,

xn = anx0

solves the system: xn+1 = axn. In fact, we can predict the long term behavior
of this system:

|xn| →





0 if |a| < 1
∞ if |a| < 1
x0 if a = 1

And, if a = −1, the orbit oscillates between ±x0. In this case, we say that ±x0

are periodic with period 2.

Generally, if we have the Lth order difference equation:

xn+1 = f(xn, xn−1, . . . , xn−(L−1))

we would need to know L values of the past. For example, here’s a second order
difference equation:

xn+1 = xn + xn−1

So, if we have x0 = 1 and x1 = 1, then

x2 = 2, x3 = 3, x4 = 5, x5 = 8, x6 = 13, . . .

This is the Fibonacci sequence. In this case, the orbit grows without bound.

12 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

1.3.1 Periodicity

Before continuing, let’s get some more vocab.
Given xn+1 = f(xn), a point w is a fixed point of f (or a fixed point for

the orbit of x0) if
w = f(w)

(Because dynamically, that point will never change). Continuing, a point w is
a periodic point of order k if

fk(w) = w

The least such k is the prime period. Here’s an example- Find the fixed points
and period 2 points for the following:

xn+1 = f(xn) = x2
n − 1

SOLUTION: The fixed point is found by solving x = f(x):

x2 − 1 = x ⇒ x2 − x− 1 = 0 ⇒ x =
1±

√
5

2

The period two points are found by solving x = F (F (x)). Notice that we already
have part of the solution (fixed points are also period 2 points).

F (F (x)) = (x2 − 1)2 − 1 = x4 − 2x2

so we solve:
x4 − 2x2 = x

which generally can be difficult to solve. However, we can factor out x2 − x− 1
and x to factor completely:

x4 − 2x2 − x = 0 ⇒ x(x+ 1)(x2 − x− 1) = 0

Therefore, x = 0 and x = −1 are the prime period 2 points.
Points may also be eventually fixed, like x =

√
2 for F (x) = x2 − 1. If we

compute the actual orbit, we get
√
2, 1, 0,−1, 0,−1, . . .

Solving First Order Equations

Consider making the first order sequence slightly more complicated:

xn+1 = axn + b

where a, b are constants (so f(x) = ax + b). Then, given an arbitrary x0, we
wonder if we can write the solution in closed form:

x1 = ax0 + b x2 = ax1 + b = a(ax0 + b) + b = a2x0 + ab+ b

1.3. DISCRETE DYNAMICAL SYSTEMS 13

For x3, we have:

x3 = a(a2x0 + ab+ b) + b = a3x0 + a2 + b+ ab+ b

and so on. Therefore, we have the closed form:

xn = anx0 + b(1 + a+ a2 + · · ·+ an−1)

Do we recall how to get the partial (or finite) geometric sum? Back then, we
might have written it this way: Let S be the partial sum. That is,

S = 1 + a+ a2 + . . .+ an−1

aS = a+ a2 + . . .+ an

(1− a)S = 1− an
S =

1− an

1− a
=

an − 1

a− 1

Given xn+1 = axn + b, the closed form solution is

xn = anx0 + b
an − 1

a− 1

and the fixed point is:

ax+ b = x ⇒ (a− 1)x = −b ⇒ x =
b

1− a

Notice that we could re-write the closed form in terms of the fixed point:

xn = an
�
x0 −

b

1− a

�
+

b

1− a

EXAMPLE: Discrete Compound of Interest
Generally, if we begin with P0 dollars accruing at an annual interest of r

percent (as a number between 0 and 1), then

Pn+1 =
�
1 +

r

12

�
Pn

If you deposit an additional k dollars each month, you would add k to the
previous amount, and we would have the form F (x) = ax+ b which we studied
in the previous section.

CAUTION: Careful what you use for the interest rate. For example, with
a 5% annual interest rate, the number r you see in the formula is 5

100 , so the
overall quantity

1 +
r

12
= 1 +

5

1200

Example

Suppose that Peter works for 4 years, and during this time he deposits $1000
each month on a savings account at an annual interest rate of 5% (with no
initial deposit). During the next 4 years, he withdraws equal amounts p so that

14 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

at the end of 4 years, he has a zero balance again. Find p and the total interest
earned.

SOLUTION: We’ll treat the two time intervals separately, since the dynamics
change after 4 years. For the first 4 years, we have P0 = 0 and at the end of 4
years (n = 48), we have

P48 = b
a48 − 1

a− 1

Substituting n = 48, a = 1 + 5
1200 = 241

200 , and b = 1000, we have:

P48 = $53, 014.89

For the next four years, the dynamical system has the form:

Pn+1 = aPn − k

where the new initial amount is P0 = 53014.89, and k is the amount we’re
withdrawing each month. After 4 years, we have zero dollars exactly:

P48 = 53014.89a48 − k
a48 − 1

a− 1
= 0 ⇒ k =

a− 1

a48 − 1
(53014.89a48) = k

That gives k ≈ $1220.89. For the total interest, Peter has withdrawn 48 ×
1220.89 = 58602.72, and he has deposited 48 × 1000 = 48000. Therefore,
putting it all together, Peter has made about $10,602.72 in interest.

Exercises

1. You decide to purchase a home with a mortgage at 6% annual interest
and with a term of 30 years (assume no down payment). If your house
costs $200,000, what will the monthly payment be? On the other hand,
if you can only make $1000 monthly payments, how much of a house can
you afford?

Visualizing First Order Equations

See Ch 4 of the Devaney’s text...
Given the form xn+1 = F (xn), and an initial point x0, there is a nice way

to visualize the orbit. Consider the graph of y = F (x). Some observations:

• The points of intersection between y = x and y = F (x) are the fixed
points of the recurrence.

• If we start with x0 along the “x−axis, then go vertically to the graph, we
will be at the point (x0, x1).

• To find x2, first go horizontally from (x0, x1) to (x1, x1). Then treat x1 as
a domain value, and go vertically to the graph of F . The coordinate will
now be (x1, x2).

1.3. DISCRETE DYNAMICAL SYSTEMS 15

• Continue this process to visualize the orbit of x0.

From last time, we finished by considering

xn+1 = f(xn)

In this particular instance, we can perform “graphical analysis” by looking at
the graph of y = f(x):

• Include the line y = x; the points of intersection are the fixed points.

• To find the orbit, given a number x0:

– Go vertically to x1 = f(x0). Thus, you are located at the point
(x0, x1). We want to use x1 as the next domain point:

– Go horizontally to the line y = x. Thus, you are now located at the
point (x1, x1), so you can use x1 as a domain value.

– Go vertically to (x1, x2), where x2 = f(x1).

– Go horizontally to (x2, x2).

– Go vertically to (x2, x3)

– And so on...

IN CLASS EXAMPLES: y =
√
x and y = ax+ b.

We can define attracting, repelling fixed points.
Now, before going further, let’s focus again on first and second order differ-

ence equations.

Definition: A difference equation is an equation typically of the form

xn+1 − xn = f(xn−1, . . . , xn−L)

However, we will also see it as a discrete system:

xn+1 = f(xn, . . . , xn−L)

So we’ll refer to either type when discussing difference equations.

Non-homogeneous Difference Equations

Consider now a slightly different form for difference equations:

xn+1 = axn + bn

If bn was actually constant, then we already derived the closed form of the
solution. In this case, we’ll focus on what happens if bn is a function of n.

First, some vocab: If we only consider xn+1 = axn, then that is called the
homogeneous part of the equation. The solution to that we’ve already

16 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

determined to be xn = Can (where C depends on the initial condition), and
we’ll refer to this as the homogeneous part of the solution.

If we have a solution pn to the full equation, where bn �= 0, we’ll refer to
that as the particular part of the solution.

We will show that, if pn is any particular solution, then

xn = can + pn

is a solution to the difference equation, and actually solves the DE with arbitrary
starting conditions.

To show that xn is indeed a solution, compute xn+1, then compare with
axn + bn:

xn+1 = can+1 + pn+1

axn + b = a(can + pn) + pn = can+1 + apn + pn

This is a solution as long as pn+1 = apn + pn, which it is. Finding pn can
be challenging, but there are some cases where we can “guess and check”:

Example: Find the general solution to

xn+1 = 3xn + 2n+ 1

SOLUTION: We’ll guess that bn has the same general form as 2n + 1, so we
guess

bn = A+Bn

Substituting this back into the difference equation, we have

A+B(n+ 1) = 3(A+Bn) + 2n+ 1 ⇒ A+Bn+B = 3A+ 3Bn+ 2n+ 1

0 = (2A−B + 1) + (2B + 2)n = 0

This equation is true for all n = 1, 2, . . ., so therefore 2B+2 = 0 and 2A−B+1 =
0. That lets us solve, B = −1 and A = −1

pn = −(n+ 1)

The general solution:
xn = c3n − (n+ 1)

where c is a constant that depends on the initial condition.

Sines and Cosines

We can do something similar for sines and cosines, although we need to use
sum/difference formulas that you may not recall:

sin(A+B) = sin(A) cos(B) + sin(B) cos(A)

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

1.3. DISCRETE DYNAMICAL SYSTEMS 17

NOTE: I’ll provide these formulas for quizzes/exams.
Here’s an example:

xn+1 = −xn + cos(2n)

The homogeneous part of the solution is c(−1)n. For the particular part, we’ll
guess that

pn = A cos(2n) +B sin(2n)

and we’ll see if we can solve for A, B. Substituting, we have:

A cos(2(n+ 1)) +B sin(2(n+ 1)) = −A cos(2n)−B sin(2n) + cos(2n)

Using the formulas,

A(cos(2n) cos(2)−sin(2n) sin(2))+B(sin(2n) cos(2)+sin(2) cos(2n)) = −A cos(2n)−B sin(2n)+cos(2n)

Collecting terms, we look at the coefficients of cos(2n) and sin(2n) separately:

cos(2n) [A cos(2) +B sin(2) +A] = cos(2n)

sin(2n) [−A sin(2) +B cos(2) +B] = 0

These equations must be true for each integer n, therefore

A(1 + cos(2)) +B sin(2) = 1
−A sin(2) +B(1 + cos(2)) = 0

⇒ A =
1

2
, B =

sin(2)

2(1 + cos(2))

The overall solution is therefore:

xn = C(−1)n +
1

2
cos(2n) +

sin(2)

2(1 + cos(2))
sin(2n)

EXERCISE: Find the general solution to

xn+1 =
1

2
xn +

n

2n
.

Do this by assuming that the the particular solution is of the form

pn =
n(An+B)

2n

Closing Notes

We might notice that solving these difference equations is very similar to solving

Ax = b

in linear algebra, or solving

ay�� + by� + cy = g(t)

in differential equations (the Method of Undetermined Coefficients). This is
not a coincidence- They all rely on the underlying equation being from a linear
operator.

For now, we will close the introduction in order to get an introduction to
Matlab.

18 CHAPTER 1. BASIC MODELS, DISCRETE SYSTEMS

Chapter 2

A Case Study in Learning

2.1 A Case Study in Learning

In a broad sense, learning is the process of building a “desirable” association
between stimulus and response (domain and range), and is measured through
resulting behavior on stimulus that has not been previously seen.

In machine learning, problems are typically cast in one of two models: Either
supervised or unsupervised learning.

In supervised learning, we are given examples of proper behavior, and we
want the computer to emulate (and extrapolate from) that behavior.

In the other type of learning, unsupervised learning, no specific outputs are
given per input, but rather an overall goal is given. Here are some examples to
help with the definition:

• Suppose you have an old clunker of a car that doesn’t have much of an
engine. You’re stuck in a valley, and so the only way out will be to go as
fast as you can for a while, then let gravity take you back up the other
side of the hill, then accelerate again, and so on. You hope that you can
build up enough momentum to get out of the valley (that’s the goal).

• Suppose you’re driving a tractor-trailer, and you need to back the trailer
into a loading dock (that’s your goal).

• In a game of chess, the input would be the position of each of the chess
pieces. The overall goal is to win the game.

In general, supervised learning is easier than unsupervised learning. One
reason is that in unsupervised learning, a lot of time wasted in trial-and-error
exploration of the possible input space. Contrast that with supervised learning,
where the “correct” behavior is explicitly given.

19

20 CHAPTER 2. A CASE STUDY IN LEARNING

2.1.1 Questions for Discussion:

1. Consider the concept of superstition: This is a belief that one must engage
in certain behaviors in order to receive a certain reward, where in reality,
the reward did not depend on those behaviors. Is it possible for a computer
to engage in superstitious activity? Discuss in terms of the supervised
versus unsupervised learning paradigms.

2. A signal light comes on and is followed by one of two other lights. The goal
is to predict which of the lights comes on given that the signal light comes
on. The experimenter is free to arrange the pattern of the two response
lights in any way- for example, one might come on 75% of the time.

Let E1, E2 denote the event that the first (second) light comes on, and
let A1, A2 denote the prediction that the first (second) light comes on
(respectively). Let π be the probability that E1 occurs.

(a) If the goal is to maximize your reward through accurate predictions,
what should you do in this experiment? Just give a heuristic answer-
you do not have to formally justify it.

(b) How would you program a machine to maximize it’s prediction ac-
curacy? Can you state this in mathematical terms?

(c) What do you think happens with actual subject (human) trials?

2.2 The n−Armed Bandit

The one armed bandit is slang for a slot machine, so the n−armed bandit can
be thought of as a slot machine with n arms. Equivalently, you may think of a
room with n slot machines.

The problem we’re trying to solve is the classic Las Vegas quandry: How
should we play the slot machines in order to maximize our returns?

Discussion Question: Is the n−armed bandit a case or supervised or unsu-
pervised learning?

First, let us set up some notation: Let a be an integer between 1 and n that
defines which machine we’re playing. Then define the expected return:

Q(a) = The expected return for playing slot machine a

You can also think of Q(a) as the mean of the payoffs for slot machine a.
If we knew Q(a) for each machine a, our strategy to maximize our returns

would be very simple: “Play only machine a”.
Of course, what makes the problem interesting is that we don’t know what

the any of the returns are, let alone which machine gives the maximum. That
leaves us to estimate the returns, and because there will always be uncertainty

2.2. THE N−ARMED BANDIT 21

associated with these estimates, we will never know if the estimates are correct.
We hope to construct estimates that get better over time (and experience).

Let’s first set up some notation. Let

Qt(a) = Our estimation of Q(a) at time t.

so we hope that our estimates get better in time:

lim
t→∞

Qt(a) = Q(a) (2.1)

Suppose we play slot machine a a total of na times, with payoffs r1, . . . , rna

(note that these values could be negative!). Then we might estimate Q(a) as
the mean of these values:

Qt(a) =
r1 + r2 + . . .+ rna

na

In statistical terms, we are using the sample mean to estimate the actual mean
which is a reasonable thing to do as a starting point. We’ll also initialize the
estimates to be zero: Q0(a) = 0.

We now come to the big question: What approach should we take to accom-
plish our goal (of maximizing our reward). The first one up is a good place to
start.

2.2.1 The Greedy Algorithm

This strategy is straightforward: Always play the slot machine with the largest
(estimated) payoff. If at+1 is the machine we’ll play at time t+ 1, then:

at+1 = argmax {Qt(1), Qt(2), . . . , Qt(n)}

where “arg” refers to the argument of the maximum (which is an integer from
1 to n corresponding to the max) . If there is a tie, then choose one of them at
random.

We’ll need to translate this into a learning algorithm, so set’s take a moment
to see how we might implement the greedy algorithm in Matlab.

Translating to Matlab

The find and max commands will be used to find the argument of the maxi-
mum value. For example, if x is a (row) vector of numbers, then the following
command:

idx=find(x==max(x))

will return all indices of the vector x that are equal to the max.
Here’s an example. Suppose we have vector x as given. What does Matlab

do?

22 CHAPTER 2. A CASE STUDY IN LEARNING

x=[1 2 3 0 3];

idx=find(x==max(x));

The result will be a vector, idx, that contains the values 3 and 5 (that is, the
third and fifth elements of x are where the maximum occurs).

Going back to the greedy algorithm, I think you’ll see a problem- What
if the estimations are wrong? Then its very possible that you’ll get stuck on
a suboptimal machine. This problem can be dealt with in the following way:
Every once in a while, try out the other machines to see what you get. This is
what we’ll do in the next section.

2.2.2 The �−Greedy Algorithm

In this algorithm, rather than always choosing the machine with the greatest
current estimate of the payout, we will choose, with probability �, a machine at
random.

With this strategy, as the number of trials gets larger and larger, na → ∞
for all machines a, and so we will be guaranteed convergence to the proper
estimates of Q(a) for all a machines.

On the flip side, because we’re always investigating other machines every
once in a while, we’ll never maximize our returns (we will always have subopti-
mal returns).

Implementing epsilon−greedy in Matlab

Using some “pseudo-code”, here is what we want our algorithm to do:

For each time we choose a machine:

• Select an action:

– Sometimes choose a machine at random

– Otherwise, select the action with greatest return. Check

for ties, and if there is a tie, pick on of them at random.

• Get your payoff

• Update the estimates Q

Repeat.

Our first programming problem will be to implement the statement “Some-
times choose a machine at random”. If we define � =E to be the probability of
this event, and N is the number of trials, then one way of selection is to set up
a vector with N elements which we’ll call greedy, that will “flag” the events-
that is, on trial j, if greedy(j)= 1, choose a machine at random. Otherwise,
choose using the greedy method. The following code will do just that (N is the
number of trials)

2.2. THE N−ARMED BANDIT 23

greedy=zeros(1,N);

if E>0

m=round(E*N); %Total number of times we should choose at random

greedy(1:m)=ones(1,m);

m=randperm(N); %Randomly permute the vector indices

greedy=greedy(m);

clear m

end

And here’s the full function. We assume that the actual rewards for each of
the bandits is given in the vector Aq, and that when machine a is played, the
sample reward will be chosen from a normal distribution with unit variance and
mean Aq(a).

function [As,Q,R]=banditE(N,Aq,E)

%FUNCTION [As,Q,R]=banditE(N,Aq,E)

% Performs the N-armed bandit example using epsilon-greedy

% strategy.

% Inputs:

% N=number of trials total

% Aq=Actual rewards for each bandit (these are the mean rewards)

% E=epsilon for epsilon-greedy algorithm

% Outputs:

% As=Action selected on trial j, j=1:N

% Q are the reward estimates

% R is N x 1, reward at step j, j=1:N

numbandits=length(Aq); %Number of Bandits

ActNum=zeros(numbandits,1); %Keep a running sum of the number of times

% each action is selected.

ActVal=zeros(numbandits,1); %Keep a running sum of the total reward

% obtained for each action.

Q=zeros(1,numbandits); %Current reward estimates

As=zeros(N,1); %Storage for action

R=zeros(N,1); %Storage for averaging reward

%***

% Set up a flag so we know when to choose at random (using epsilon)

%***

greedy=zeros(1,N);

if E>0

m=round(E*N); %Total number of times we should choose at random

greedy(1:m)=ones(1,m);

m=randperm(N);

greedy=greedy(m);

clear m

end

if E>=1

error(’The epsilon should be between 0 and 1\n’);

end

24 CHAPTER 2. A CASE STUDY IN LEARNING

%**

%

% Now we’re ready for the main loop

%**

for j=1:N

%STEP ONE: SELECT AN ACTION (cQ) , GET THE REWARD (cR) !

if greedy(j)>0

cQ=ceil(rand*numbandits);

cR=randn+Aq(cQ);

else

[val,idx]=find(Q==max(Q));

m=ceil(rand*length(idx)); %Choose a max at random

cQ=idx(m);

cR=randn+Aq(cQ);

end

R(j)=cR;

%UPDATE FOR NEXT GO AROUND!

As(j)=cQ;

ActNum(cQ)=ActNum(cQ)+1;

ActVal(cQ)=ActVal(cQ)+cR;

Q(cQ)=ActVal(cQ)/ActNum(cQ);

end

Next we’ll create a test bed for the routine. We will call the program 2,000
times, and each call will consist of 1,000 plays. We will set the number of bandits
to 10, and change the value of � from 0 to 0.01 to 0.1, and see what the average
reward per play is over the 1000 plays.

Here’s a script file that we’ll use to call the banditE routine:

Ravg=zeros(1000,1);

E=0.1;

for j=1:2000

m=randn(10,1);

[As,Q,R]=banditE(1000,m,E);

Ravg=Ravg+R;

if mod(j,10)==0

fprintf(’On iterate %d\n’,j);

end

end

Ravg=Ravg./2000;

plot(Ravg);

The output of the algorithms are shown in Figure 2.1.

The Softmax Action Selection

In the Softmax action selection algorithm, the idea is to construct a set of
probabilities. This set will have the properties that:

2.2. THE N−ARMED BANDIT 25

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

Plays

A
v
e

ra
g

e
 R

e
w

a
rd

ε=0.1

ε=0.01

ε=0

Figure 2.1: Results of the testbed on the 10-armed bandit. Shown are the
rewards given per play, averaged over 2000 trials.

• The machine (or arm) giving the highest estimated payoff will have the
highest probability.

• We will choose a machine using the probabilities. For example, if the
probabilities are 0.5, 0.3, 0.2 for machines 1, 2, 3 respectively, then machine
1 would be chosen 50% of the time, machine 2 would be chosen 30% of
the time, and the last machine 20% of the time.

Therefore, this algorithm will maintain an exploration of all machines so that
we will not get locked onto a suboptimal machine.

Now if we have n machines with estimated payoffs recorded as:

Q = [Qt(1), Qt(2), . . . , Qt(n)]

we want to construct n probabilities,

P = [Pt(1), Pt(2), . . . , Pt(n)]

The requirements for this transformation are:

1. Pt(k) ≥ 0 for k = 1, 2, . . . (because all probabilities are positive). An-
other way to say this is to say that the range of the transformation is
nonnegative.

26 CHAPTER 2. A CASE STUDY IN LEARNING

2. If Qt(a) < Qt(b), then Pt(a) < Pt(b). That is, the transformation must
be strictly increasing for all domain values.

3. Finally, the sum of the probabilities must be 1.

A function that satisfies requirements 1 and 2 is the exponential function.
It’s range is nonnegative. It maps large negative values (large negative payoffs)
to near zero probability, and it is strictly increasing. Up to this point, the
transformation is:

P̂t(k) = eQt(k)

We need the probabilities to sum to 1, so we normalize the P̂t(k):

Pt(k) =
P̂t(k)

P̂t(1) + P̂t(2) + . . .+ P̂t(n)
=

exp(Qt(k))�n
j=1 exp(Qt(j))

This is a popular technique worth remembering- We have what is called a Gibbs
(or Boltzmann) distribution. We could stop at this point, but it is convenient to
introduce a control parameter τ (sometimes this is referred to as the temperature
of the distribution). Our final version of the transformation is given as:

Pt(k) =
exp

�
Qt(k)

τ

�

�n
j=1 exp

�
Qt(j)

τ

�

EXERCISE: Suppose we have two probabilities, P (1) and P (2) (we left off
the time index since it won’t matter in this problem). Furthermore, suppose
P (1) > P (2). Compute the limits of P (1) and P (2) as τ goes to zero. Compute
the limits as τ goes to infinity (Hint on this part: Use the definition, and divide
numerator and denominator by exp(Q(1)/τ) before taking the limit).

What we find from the previous exercise is that the effect of large τ (hot
temperatures) makes all the probabilities about the same (so we would choose
a machine almost at random). The effect of small tau (cold temperatures)
makes the probability of choosing the best machine almost 1 (like the greedy
algorithm).

In Matlab, these probabilities are easy to program. Let Q be a vector holding
the current estimates of the returns, as before, and let t= τ , the temperature.
Then we construct a vector of probabilities using the softmax algorithm:

P=exp(Q./t);

P=P./sum(P);

Programming Comments

1. How to select action a with probability p(a)?

We could do what we did before, and create a vector of choices with
those probabilities fixed, but our probabilities change. We can also use

2.2. THE N−ARMED BANDIT 27

the uniform distribution, so that if x=rand, and x ≤ p(1), use action
1. If p(1) < x ≤ p(1) + p(2), choose action 2. If p(1) + p(2) < x ≤
p(1) + p(2) + p(3), choose action 3, and so on. There is an easy way to
do this, but it is not optimal (in terms of speed). We introduce two new
Matlab functions, cumsum and histc.

The function cumsum, which means cumulative sum, takes a vector x as
input, and outputs a vector y so that y=cumsum(x) creates:

yk =

k�

n=1

xn = x1 + x2 + . . .+ xk

For example, if x = [1, 2, 3, 4, 5], then cumsum(x) would output [1, 3, 6, 10, 15]

The function histc (for histogram count) has the form: n=histc(x,y),
where the vector y is monotonically increasing. The elements of y form
“bins” so that n(k) counts the number of values in x that fall between the
elements y(k) (inclusive) and y(k+1) (exclusive) in the vector y. Try a
particular example, like:

Bins=[0,1,2];

x=[-2, 0.25, 0.75, 1, 1.3, 2];

N=histc(x, Bins);

Bins sets up the desired intervals as [0, 1) and [1, 2) and the last value is
set up as its own interval, 2. Since −2 is outside of all the intervals, it is
not counted. The next two elements of x are inside the first interval, and
the next two elements are inside the second interval. Thus, the output of
this code fragment is N = [2, 2, 1].

Now in our particular case, we set up the bin edges (intervals) so that
they are the cumulative sums. We’ll then choose a number between 0 and
1 using the (uniformly) random number x = rand, and determine what
interval it is in. This will be our action choice:

P=[0.3, 0.1, 0.2, 0.4];

BinEdges=[0, cumsum(P)];

x=rand;

Counts=histc(x,BinEdges);

ActionChoice=find(Counts==1);

2. We have to change our parameter τ from some initial value τinit (big, so
that machines are chosen almost at random) to some small final value,
τfin. There are an infinite number of ways of doing this. For example, a
linear change from a value a to a value b in N steps would be the equation
of the line going from the point (1, a) to the point (N, b).

Exercise: Give a formula for the parameter update, τ in terms of the
initial value, τinit and the final value, τfin if we use a linear decrease as t
ranges from 1 to N .

28 CHAPTER 2. A CASE STUDY IN LEARNING

A more popular technique is to use the following formula, which we’ll use
to update many parameters. Let the initial value of the parameter be
given as a, and the final value be given as b. Then the parameter p is
computed as:

p = a ·
�
b

a

�t/N

(2.2)

Note that when t = 0, p = a and when t = N , p = b1

“Win-Stay, Lose-Shift” Strategy

The “Win-Stay, Lose-Shift” strategy discussed in terms of Harlow’s monkeys and
perhaps the probability matching experiments of Estes might be re-formulated
here for the n−armed bandit experiment.

In this experiment, we interpret the strategy as: If I’m winning, make the
probability of choosing that action stronger. If I’m losing, make the probability
of choosing that action weaker. This brings us to the class of pursuit methods.

Define a∗ to be the winning machine at the moment, i.e.,

a∗ = max
a

Qt(a)

The idea now is straightforward- Slightly increase the probability of choosing
this winning machine, and correspondingly decrease the probability of choosing
the others.

Define the probability of choosing machine a as P (a) (or, if you want to
explicitly include the time index, Pt(a). Then given the winning machine index
as a∗, we update the current probabilities by using a parameter β ∈ [0, 1]:

Pt+1(a
∗) = Pt(a

∗) + β [1− Pt(a
∗)]

and the rest of the probabilities decrease towards zero:

Pt+1(a) = Pt(a) + β [0− Pt(a)]

Exercises with the Pursuit Strategy

1. Suppose we have three probabilities, P1, P2, P3, and P1 is the unique max-
imum. Show that, for any β > 0, the updated values still sum to 1.

2. Using the same values as before, show that, for any β > 0, the updated
values will stay between 0 and 1- that is, If 0 ≤ Pi ≤ 1 for all i before the
update, then after the update, 0 ≤ Pi ≤ 1.

3. Here is one way to deal with a tie (show that the updated values still sum
to 1): If there are k machines with a maximum, update each via:

Pt+1 = (1− β) ∗ Pt + β/k

1In the C/C++ programming language, indices always start with zero, and this is leftover
in this update rule. This is not a big issue, and the reader can make the appropriate change
to starting with t = 1 if desired.

2.2. THE N−ARMED BANDIT 29

4. Suppose that for some fixed j, Pj is always a loser (never a max). Show
that the update rule guarantees that Pj → 0 as t → ∞. HINT: Show that
Pj(t) = (1− β)tPj(0)

5. Suppose that for some fixed j, Pj is always a winner (with no ties). Show
that the update rule guarantees that Pj → 1 as t → ∞.

Matlab Functions softmax and winstay

Here are functions that will yield the softmax and win-stay, lose-shift strategies.
Below each is a driver. Read through them carefully so that you understand
what each does. We’ll then ask you to put these into Matlab and comment on
what you see.

function a=softmax(EstQ,tau)

% FUNCTION a=softmax(EstQ, tau)

% Input: Estimated payoff values in EstQ (size 1 x N,

% where N is the number of machines

% tau - "temperature": High values- the probs are all

% close to equal; Low values, becomes "greedy"

% Output: The machine that we should play (a number between 1 and N)

if tau==0

fprintf(’Error in the SoftMax program-\n’);

fprintf(’Tau must be greater than zero\n’);

a=0;

return

end

Temp=exp(EstQ./tau);

S1=sum(Temp);

Probs=Temp./S1; %These are the probabilities we’ll use

%Select a machine using the probabilities we just computed.

x=rand;

TotalBins=histc(x,[0,cumsum(Probs)’]);

a=find(TotalBins==1);

Here is a driver for the softmax algorithm. Note the implementation details
(e.g., how the “actual” payoffs are calculated, and what the initial and final
parameter values are):

%Script file to run the N-armed bandit using the softmax strategy

%Initializations are Here:

NumMachines=10;

ActQ=randn(NumMachines,1); %10 machines

30 CHAPTER 2. A CASE STUDY IN LEARNING

NumPlay=1000; %Play 100 times

Initialtau=10; %Initial tau ("High in beginning")

Endingtau=0.5;

tau=10;

NumPlayed=zeros(NumMachines,1); %Keep a running sum of the number

% of times each action is selected

ValPlayed=zeros(NumMachines,1); %Keep a running sum of the total

% reward for each action

EstQ=zeros(NumMachines,1);

PayoffHistory=zeros(NumPlay,1); %Keep a record of our payoffs

for i=1:NumPlay

%Pick a machine to play:

a=softmax(EstQ,tau);

%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

PayoffHistory(i)=Payoff;

tau=Initialtau*(Endingtau/Initialtau)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Here is the function implementing the pursuit strategy (or “Win-Stay, Lose-
Shift”).

function [a, P]=winstay(EstQ,P,beta)

% function [a,P]=winstay(EstQ,P,beta)

% Input: EstQ, Estimated values of the payoffs

% P = Probabilities of playing each machine

% beta= parameter to adjust the probabilities, between 0 and 1

% Output: a = Which machine to play

% P = Probabilities for each machine

[vals,idx]=max(EstQ);

winner=idx(1); %Index of our "winning" machine

%Update the probabilities. We need to do P(winner) separately.

NumMachines=length(P);

P(winner)=P(winner)+beta*(1-P(winner));

2.2. THE N−ARMED BANDIT 31

Temp=1:NumMachines;

Temp(winner)=[]; %Temp now holds the indices of all "losers"

P(Temp)=(1-beta)*P(Temp);

%Probabilities are all updated- Choose machine a w/prob P(a)

x=rand;

TotalBins=histc(x,[0,cumsum(P)’]);

a=find(TotalBins==1);

And its corresponding driver is below. Again, be sure to read and understand
what each line of the code does:

%Script file to run the N-armed bandit using pursuit strategy

%Initializations

NumMachines=10;

ActQ=randn(NumMachines,1);

NumPlay=2000;

Initialbeta=0.01;

Endingbeta=0.001;

beta=Initialbeta;

NumPlayed=zeros(NumMachines,1);

ValPlayed=zeros(NumMachines,1);

EstQ=zeros(NumMachines,1);

Probs=(1/NumMachines)*ones(10,1);

for i=1:NumPlay

%Pick a machine to play:

[a,Probs]=winstay(EstQ,Probs,beta);

%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

beta=Initialbeta*(Endingbeta/Initialbeta)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Homework: Implement these 4 pieces of code into Matlab, and comment
on the performance of each. You might try changing the initial and final values

32 CHAPTER 2. A CASE STUDY IN LEARNING

of the parameters to see if the algorithms are stable to these changes. As you
form your comments, recall our two competing goals for these algorithms:

• Estimate the values of the actual payoffs (more accurately, the mean pay-
out for each machine).

• Maximize our rewards!

2.2.3 A Summary of Reinforcement Learning

We looked in depth at a basic problem of unsupervised learning- That of trying
to find the best winning slot machine in a bank of many. This problem was
unsupervised because, although we got rewards or punishments by winning or
losing money, we did not know at the beginning of the problem what those
payoffs would be. That is, there was no expert available to tell us if we were
doing something correctly or not, we had to infer correct behavior from directly
playing the machines.

We also saw that to solve this problem, we had to do a lot of trial and
error learning- that’s typical in unsupervised learning. Because an expert is not
there to tell us the operating parameters, we have to spend time exploring the
possibilities.

We learned some techniques for translating learning theory into mathemat-
ics, and in the process, we learned some commands in Matlab. We don’t expect
you to be an expert programmer - this should be a fairly gentle introduction to
programming. At this stage, you should be able to read some Matlab code and
interpret the output of an algorithm. Later on, we’ll give you more opportunities
to produce your own pieces of code.

In summary, we looked at the greedy algorithm, the �−greedy algorithm,
the softmax strategy, and the pursuit strategy. You might consider how closely
(if at all) these algorithms would reproduce human or animal behavior if given
the same task.

There are many more topics in Reinforcement Learning to consider, we pre-
sented only a short introduction to the topic.

