
Chapter 9

Data Clustering

When we are confronted with a novel data set it is customary to first do some
exploratory analysis. A clustering of the data is an algorithm that can help us
“summarize” how the data sits in its domain- This would be analogous to using
the arithmetic mean as a number that summarizes one dimensional data.

Clustering can be intuitively clear, but algorithmically difficult. For example,
consider the data in the first graph in Figure 9.1. I think you would probably
agree that there appears to be three natural clusterings.

−4 −3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.1: In the first graph, we see data that have no class labels, but there
seems to be a natural separation of the data into three clumps.

Formally, a data clustering may be thought of as a function whose domain is
a data point and whose range value is an integer denoting cluster membership
(1, 2, or 3 in the previous example).

125



126 CHAPTER 9. DATA CLUSTERING

9.1 Background

When we cluster data, there may already be labels for the data. We would
call a clustering of that type to be supervised learning, since there are examples
of “correct” labels. The previous figure showed an example of unsupervised
learning, where there are no exemplars of “correct” labelling. We’ll formalize
this a bit before continuing:

Definition: Unsupervised Clustering: Given a data set, X , whose el-
ements are vectors x(i) ∈ IRn, we want to construct a “membership function”
which has its domain in IRn and will output the cluster index (or label). Defin-
ing this function as m, we have, for the ith data point, its associated class label
gi:

m(x(i)) = gi

where gi is an integer from 1 to k (k being the number of clusters desired). Later
we’ll discuss how the algorithm might determine the value of k on its own, so
for now, we’ll consider k to be given.

The biggest issue with unsupervised clustering is that the problem speci-
fication is very ill-posed, meaning that there are many, many ways that one
might build such a function m. For two extreme examples, consider these two
membership functions:

m1(x
(i)) = 1

where i is the index for the data points. Another function that is about as useful
as m1 is the following:

m2(x
(i)) = i

In the first case, we have only one class, and in the second case, we have as
many classes as there are data points! In order to get a useful algorithm, we
will need to try to define some kind of error function that we can then minimize.
The easiest way to do this is through Voronoi Cells:

Definition: Let


c(i)
k

i=1
be points in IRn. These points form k Voronoi Cells,

where the jth cell is defined as the set of points that are closer to cell j than
any other cluster:

Vj =


x ∈ IRn | x− c(j) ≤ x− c(i), i = 1, 2, . . . , k


The points


c(i)
k

i=1
are called cluster centers. In the uncommon occurrence

that a point x lies on the border between cells, it is customary to include it in
the cell whose index is smaller (although one would fashion the decision on the
problem at hand). The reader might note that a Voronoi cell has a piecewise
linear border as shown in Figure 9.2.



9.1. BACKGROUND 127

Figure 9.2: Sample Voronoi diagram sketched by hand. First, draw a line
between neighboring centers (dotted in the figure). These are guides to drawing
the actual borders, shown in solid black. These are perpendicular bisectors of
the dotted lines.

Examples in “Nature”

1. In [6], Voronoi cells are used to define the “area potentially available
around a tree”. That is, each tree in a stand represents the center of
the cell.

2. Using a map of the campus with the emergency telephone boxes marked
out and used as the centers, we could always tell where the closest phone
is located.

We can draw a Voronoi diagram by hand: Between neighboring cells, draw
a line (that will be erased at the end), then draw the perpendicular bisectors
for each line drawn. See Figure 9.2. This can get complicated fairly quickly,
so we will be using Matlab to produce the plots. The algorithms that do these
plots are very interesting (see any text in Computation Geometry) but will be
beyond the scope of our text.

Matlab Example:

Matlab has the the plotting algorithm built-in. Figure 9.3 shows the output of
the following code (yours will be slightly different due to using random cluster
centers):

X=randn(10,2);

voronoi(X(:,1),X(:,2));

We can also have Matlab return the vertices of the Voronoi cells to plot them
manually:



128 CHAPTER 9. DATA CLUSTERING

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.3: The output of our Matlab example, running the voronoi algorithm
on 10 random points in IR2.

[vx,vy]=voronoi(X(:,1),X(:,2));

plot(vx,vy,’k-’,X(:,1),X(:,2),’r*’);

In the algorithms that we work with, it will be convenient to have a function
that will identify points within a given cluster- That is, will have the value 0 if
the point is not in a given cluster, or 1 if it is. The “characteristic function” is
typical for that purpose, and we’ll define it as the following:

χi(x) =



1 if m(x) = i
0 otherwise

One general way to measure the goodness of a clustering algorithm is to
use a measure called the distortion error for a given cluster i, and the total
distortion error1. Given a clustering of N points, let Ni denote the number of
points in cluster i. We first define the error for cluster i, then sum them all
for the overall error. Here is the definition for the distortion error for the ith

cluster, where we notice that if the point x(k) is not in cluster i, then we simply
add 0:

Ei =
1

Ni

N


k=1

x(k) − c(i)2 χi(x
(k))

1Some authors do not square the norms, but it is more convenient for the theory, and does
not change the end results.



9.2. K-MEANS CLUSTERING 129

so that the overall distortion error is defined to be:

Etotal =

p


k=1

Ek

Now that we have a way of measuring the goodness of a clustering, we want to
have an algorithm that will minimize the function.

9.2 K-means clustering

A relatively fast method to perform the clustering is the k−means clustering.
In some circles, this is called Lloyd’s algorithm, and there was an update done
by Linde, Buzo and Gray to call that the Linde-Buzo-Gray (LBG) algorithm
[26].

The membership function for both k−means and LBG is defined so that we
are in cluster i if we are in the Voronoi cell defined by the ith cluster center.
That is,

m(x) = i iff x− c(i) < x− c(j) i = j, j = 1 : p (9.1)

In the rare circumstance that we have a tie, we’ll choose to put the point with
the center whose index is smallest (but this is ad-hoc).

The Algorithm

Keeping in mind that we’ll be using Matlab for its implementation, we’ll write
the algorithm in matrix form.

Let X be a matrix of p data points in IRn (so each data point is a row, and
the matrix is p×n), and let C denote a matrix of k centers in IRn (each “center”
is a row, and the matrix is k × n).

At each pass of the algorithm, the membership function requires us to take
p× k distance calculations, followed by p sorts (each point has to find its own
cluster index), and this is where the algorithm takes most of the computational
time. To do the distance calculations, we will write a function named edm (for
Euclidean Distance Matrix). See the exercises in this section for the Matlab
code.



130 CHAPTER 9. DATA CLUSTERING

K-Means Clustering

Given: p data points in IRn and k cluster centers (as vectors in IRn). Then:

• Sort the data into k sets by using the membership function in Equation
9.1. We will use the EDM to do this.

• Re-set center ci as the centroid (mean) of the data in the ith set.

• Compute the distortion error.

• Repeat until the distortion error no longer decreases (either slows to
nothing or starts increasing).

A Toy Example:

Here we use the k−means algorithm three times on a small data set, so you can
have a test set for the code that you write.

Let the data set X5×2 be the matrix whose rows are given by the data points
in the plane:



1
2



,



0
1



,



−1
0



,



1
1



,



−1
−1



You might try drawing these on a plane. You may see a clustering of three
points to the right, and a clustering of two points to the left.

We will use two cluster centers, (typically initialized randomly from the data)
in this case:



0
1



,



1
1



The EDM of distances will be D5×2 and is the distance between our 5 data
points and 2 cluster centers. The membership function then looks for the min-
imum in each row, shown as the vector M below:

D =













√
2 1

0 1√
2

√
5

1 0√
5

√
8













, M =













2
1
1
2
1













Resorting into two clusters,


0
1



,



−1
0



,



−1
−1



1
2



,



1
1



The cluster centers are re-set as the centroids:


−2/3
0



,



1
3/2





9.2. K-MEANS CLUSTERING 131

After one more sort and centroid calculation, we get:


−1
−1/2



,



2/3
4/3



which does not change afterward (so the clusters also remain the same).
The basic algorithm may have a few shortcomings. For example,

• The centers may be (or become) empty- That is, there are no data points
closest to a given center. This is a good chance of this happening if you
simply choose random numerical values as the initial centers, that’s why
we recommend choosing random data points as initial centers- You’ll have
at least one point in each cluster that way.

• We had to pre-define the number of clusters. Is it possible to construct an
algorithm that will grow or shrink the number of clusters based on some
performance measure? Yes, and that change is the LBG algorithm.

Matlab Note

If the “Statistics Toolbox” is available for your copy of Matlab, then kmeans is
a built-in command. Here’s the previous example using the stats toolbox.

X=[1,0,-1,1,-1;2,1,0,1,-1]’;

C=[0,1;1,1]’;

[M,C1]=kmeans(X,2,’start’,C);

If we didn’t have an initial clustering C, the command is a lot shorter. For
example, with just the data and number of clusters, we would have:

X=[1,0,-1,1,-1;2,1,0,1,-1]’;

[M,C]=kmeans(X,2);

Matlab gives us several ways of initializing the clusters- See the documentation.

Exercises

1. Fill in the missing details from the example in the text: Fill in the EDM
and the vector M after the second sort, and continue the example one
more iteration to show that the clusters do not change. Hint: To compute
the distance matrix, use the points as they were originally ordered.

2. Given p scalars, x1, x2, . . . , xp, show (using calculus) that the number µ
that minimizes the function:

E(µ) =

p


k=1

(xk − µ)2

is the mean, µ = x̄. Hint: We think of x1, . . . , xp as being fixed numerical
values, so E is a function of only one variable µ.



132 CHAPTER 9. DATA CLUSTERING

3. Generalize the last exercise so that the scalars (and µ) are now vectors in
IRn. That is, given a fixed set of p vectors in IRn, show that the vector µ
that minimizes:

E(µ) =

p


k=1

x(i) − µ2

is the mean (in IRn).

4. Write the following as a Matlab function. The abbreviation EDM is for
Euclidean Distance Matrix. Good programming style: Include comments!

function z=edm(w,p)

% A=edm(w,p)

% Input: w, number of points by dimension

% Input: p is number of points by dimension

% Ouput: Matrix z, number points in w by number pts in p

% which is the distance from one point to another

[S,R] = size(w);

[Q,R2] = size(p);

p=p’;

if (R ~= R2), error(’Inner matrix dimensions do not match.’),end

z = zeros(S,Q);

if (Q<S)

p = p’;

copies = zeros(1,S);

for q=1:Q

z(:,q) = sum((w-p(q+copies,:)).^2,2);

end

else

w = w’;

copies = zeros(1,Q);

for i=1:S

z(i,:) = sum((w(:,i+copies)-p).^2,1);

end

end

z = z.^0.5;

5. If you don’t have the kmeans function built-in, try writing one using the
EDM function. It is fairly straightforward using the EDM function and
the min function.

6. Will the cluster placement at the end of the algorithm be independent
of where the clusters start? Answer this question using all the different
possible pairs of initial points from our toy data set, and report your
findings- In particular, did some give a better distortion error than others?



9.3. NEURAL GAS 133

LBG modifications

We can think about ways to prune and grow the number of clusters, rather than
making it a predefined quantity. Here are some suggestions for modifications you
can try. This actually changes the k−means algorithm into the LBG algorithm.

• Split that cluster with the highest distortion measure, and continue to split
clusters until the overall distortion measure is below some preset value.
The two new cluster centers can be initialized a number of ways- Here is
one option:

c(i1,i2) = c(i) ± ǫ

However, this may again lead to empty clusters.

• We can prune away clusters that either have a small number of points,
or whose distortion measure is smaller than some pre-set quantity. It is
fairly easy to do this- Just delete the corresponding cluster center from
the array.

9.3 Neural Gas

So far, the clustering algorithms we have considered use arithmetic means to
place cluster centers. This works well when the data consists of “clouds” (coming
from a random process, for example). This process does not work well when the
data lies on some curved manifold2

If we imagine all of the data to be on the boundary of a circle, for example,
taking an average will place the cluster centers off the circle.

Figure 9.4: If the data lies on a curved surface, then using the mean may pull
the centers (stars in the graph) out of the data.

But there is something that may be exploited about the cluster centers to
help us in visualizing how the data lies in its space.

2A manifold is generally defined to be an object that looks locally like IRk for some k. For
example, a path in three dimensions is locally 1 dimensional.



134 CHAPTER 9. DATA CLUSTERING

It would be helpful if we knew what kinds of structure the data may have.
For example, in Figure 9.4, it would be helpful to know that the data is actually
(locally) one dimensional.

The method we will use to determine the structure of the data will be to
define connections (or edges) between clusters. Consider the data in Figure
9.5. It is this kind of structure that the clustering should reflect- Which cluster
centers are “neighboring” points in the data? Just as importantly, which are
not neighbors in the data?

Figure 9.5: The star shaped points are the cluster centers. It would be nice to
know which cluster centers belong together in a single “blob” of data, versus
which cluster centers are in the other set of data.

In mathematical terminology, we want to find what is called a topology pre-
serving clustering. For us, the topology of the clusters is defined by how the
cluster centers are connected to each other (that is, so we know which cluster
centers are neighbors and which are not).

More generally, we want the clustering to be what is called “topology pre-
serving” in the sense that clusters defined to be neighbors in the cluster center
topology are actually neighbors in the data, and vice versa. Before continuing,
some graphical examples should help us with this concept.

In Figure 9.6, we see three topologies mapped to the data, which is a uniform
distribution of points in IR2. In the first picture, the topology of the cells is a
one dimensional set. In this situation, the cluster mapping is not topology
preserving, because neighboring cells in the topology are not adjacent in the
plane. In the second situation, we have a three-dimensional topology mapping
to the plane. In this case, neighboring data points in IR2 are mapped to non-
neighboring cells in the topology. Only in the third picture do we see that both
parts of the topology preserving mapping are satisfied.

The Neural Gas Algorithm [27, 29, 28] is designed with a couple of big
changes in mind (changes from k-means and LBG).

1. We don’t want to use arithmetic means if possible. It is more desirable
to have cluster centers that are actually embedded in with the data (like



9.3. NEURAL GAS 135

Figure 9.6: Which mapping is topology preserving? Figure 1 shows a mapping
that is not topology preserving, since neighboring cells are mapped to non-
neighboring points in IR2. On the other hand, the middle clustering is not
topology preserving, because neighboring points in IR2 are mapped to non-
neighboring cells in the topology. Only the third picture shows a topology
preserving clustering.



136 CHAPTER 9. DATA CLUSTERING

in Figure 9.5) rather than every cluster outside of the data (like in Figure
9.4).

2. We want the algorithm to build connections between the cluster centers.
Hopefully this will tell us if we have separated regions of data (like in
Figure 9.5).

Embedding the Clusters

To solve the first problem, we are going to endow the data with the power to
attract the cluster centers. That is, when a data point x is chosen, we will
determine which cluster center is closest (the “winner”), and we will move the
cluster center towards that point. We don’t want to go very far, just a slight
move in that direction.

Mathematically, for a given data point x, find the winning center, c and
move in the direction x− c. The update rule would then look like:

cnew = cold + h(t)(x − cold) (9.2)

where h(t) will be a function determining how far to move. Normally, at the
beginning of the clustering, h is relatively large. As the number of iterations
grow larger, h gets very small (so that the movement at each iteration gets very
slight).

This method would work very well, but it might result in a lot of empty
cluster centers (centers that are never winners). This is where the concept of
the “gas” comes into play- We think of the data as being in a viscous fluid, like
jello.

How does this work in practice? As before, we first select a data point
at random, and find the winning cluster center. We move the cluster center
towards the data point. In a viscous fluid, that means that the cluster centers
close to the winner will ALSO move toward the data point (just not as much).
Therefore, instead of updating the single winning center using Equation 9.2, we
update all centers.

The key point is that the winning center is attracted to x with the strongest
force, then the next closest center is attracted with the next strongest force, and
so on. To do this, we’ll need to sort the centers by their distance to our data
point x.

You might have a negative reaction at this point- Given a lot of cluster
centers, this is a lot of sorting. What is typical is that we will define a value k,
and we will only update the k closest centers.

We define a way of setting this measure: We define si to be the number of
centers closer to x than c(i). The easiest way to compute this is to sort the
centers by their distance to x, then put the first k indices in a vector v. So, for
example, the vector v can be defined as:

v = {i1, i2, . . . , ik}



9.3. NEURAL GAS 137

so the “winning” center has index ii. Now we define the values s:

si1 = 0, si2 = 1, si3 = 2, . . . , sik = k − 1

Example: Let C = 0.1, 0.2, 0.4, 0.5. If x = 0.25, then i1 = 2, and v =
{2, 1, 3, 4}. The values of s: s2 = 0, s1 = 1, s3 = 2, s4 = 3.

Building Connections

Now that we have set up an algorithm that moves the centers into the data, we
look at the problem of defining connections. The underlying idea is that we’ll
connect a winning center to its neighbor, indexed by v(2). If that connection
has not been selected for a long time, that probably means that over time, the
centers have drifted apart, and we should remove the connection.

Therefore, to build connections, we will use two arrays (if the number of
centers is k, they are both k × k), M and T .

Definition: A Connection Matrix, M , is a matrix of 1’s and 0’s where

Mij =



1 If cell i connected to j
0 Otherwise

To build the connection matrix, once v is determined, then Mi1,i2 is set to
1, and the age of the connection Ti1,i2 is set to 0. All the other ages have 1
added to them.

Lastly, we should check to see how many iterations have passed since each
edge was constructed. If too much time has passed (pre-set by some parameter),
then remove those connections.

Parameter List

The number of parameters we’ll use is a little large, but coding them is no
problem. Here is a list of them, together with some standard values, where N
is the number of data points.

• Number of data points: N

• Relative maximum distance to move, if we update the winning center: ǫ

ǫinitial = 0.3 ǫfinal = 0.05

• Parameter λ also gives some control over how much to move the winner
and neighbors.

λinitial = 0.2N λfinal = 0.01

• The maximum amount of time before a connection is removed is:

Tm
initial = 0.1N Tm

final = 2N

• Maximum number of iterations: tmax= 200N .



138 CHAPTER 9. DATA CLUSTERING

The parameters that have an “initial” and “final” time are updated using the
power rule. If the initial value is αinitial and the final value is αfinal, then on
iteration i,

αi = αinitial



αfinal

αinitial

i/tmax

(9.3)

The Neural Gas Algorithm:

1. Select a data point x at random, and find the winner, c(i1).

2. Compute v by finding the next k − 1 closest centers.

3. Update the k centers:

c(ik) = c(ik) + ǫ exp

−sik
λ



(x− c(ik))

4. Update the Connection and Time Matrices: Set Mi1,i2 = 1, and Ti1,i2 = 0.

Age all connections by 1, Tj,k = Tj,k + 1 for all j, k.

5. Remove all old connections. Set Mj,k = 0 if Tj,k ≥ Tm

6. Repeat.

9.3.1 Matlab and Neural Gas

Matlab has not yet implemented a version of the Neural Gas algorithm. We will
construct a suite of programs below.

The suite of programs we will use will be: NeuralGas01.m, initng.m,
paramUpdate.m, and plotng.m.
The program initng is a program that will set all of the training parameters,

and initialize the centers. This program should be edited at the beginning of
a problem. The code is given below. Note the presence of the data structure,
which allows us to wrap the parameters and the data together.

function C=initng(X)

[m,n]=size(X);

C.NC=50; %Number of clusters (Depends on the data)

C.lr=[0.3 0.05]; %initial, final epsilon

C.nbr= [0.2*n 0.01]; %initial, final lambda

% SEE TRAINING NOTE 1

C.tcon=[0.1*n 2*n]; %initial, final time (for connection matrix)

% SEE TRAINING NOTE 2

C.tmax=200*n; %max number of iterations

% Shouldn’t need to change tmax.



9.3. NEURAL GAS 139

% The next two parameters should be left alone for now:

C.epochs=1; %number of epochs (each epoch runs tmax iterations,

%and resets the training parameters after each.)

C.tflag=1 %Training flag: 1=Use Connection, 0=Do not use

% Now initialize centers randomly from the data:

Id=randperm(n);

C.cen= X(:,Id(1:C.NC)); %Initialize the centers randomly from the data

C.M=zeros(C.NC,C.NC); %Initialize the connection matrix

The Neural Gas code itself is a bit lengthy, but the comments are included
below so you know how to call the function.

function C=NeuralGas01(X,C)

%FUNCTION C=NeuralGas01(X,C)

% This is the Neural Gas clustering algorithm. There are

% two ways to call this program:

% [C,M]=NeuralGas01(X);

% With only one input argument (X is dimension by

% number of points), the program will call the function

% initng.m for the initialization.

%

% [C,M]=NeuralGas01(X,C)

% With two input parameters, we assume the centers

% have been initialized in the structure C. See the

% initng file for structure specifications.

The function paramUpdate is simply a call to Equation (9.3). You won’t
need to change that.

The function plotng01 is an example of how we can plot the edges of the
graph that is produced using the algorithm. As presented, it only plots the two
dimensional graph. You might look it over, but you won’t need to change that
either.

Training Notes: Neural Gas

To use the programs we’ve listed, first you need a set of data in X . Here’s a
really simple example of performing the Neural Gas algorithm in Matlab:

X=2*randn(2,300)-1; % NOTE: Data is dimension x num points!

C=NeuralGas01(X);

If you want to manually produce the final plot, you can do that with the following
three commands:



140 CHAPTER 9. DATA CLUSTERING

plot(X(1,:),X(2,:),’k.’);

plotng01(C);

plot(C.cen(1,:),C.cen(2,:),’r*’)

hold off

For practice, there are six sets of data online in the file SixDatasets.mat,
plotted in Figure 9.7. The top left shows the first, and it involves concentric
circles- A typical kind of “toy problem” that we use to test clustering routines.
Data sets 1, 3, 5, 6 show distinct clusters on which we hopefully have connected
centers. Data set 2 has 300 data points to the left of zero, 100 data points to
the right. A good clustering for that and data set 4 would be one in which the
density of the data is somehow reflected in the density of the data.

To use these datasets, download the mat file from the class website, then use
the load command. That loads in a “cell array” of data named XX. To get the
data in a usable form, here’s how it would go in Matlab to load the smiley face
data and try to cluster it:

load SixDatasets

X=XX{3};

C=NeuralGas01(X’);

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

0 0.5 1
0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Figure 9.7: Six datasets with which to try using the Neural Gas clustering (going
from left to right, top to bottom). Data sets 1, 3, 5, 6 show distinct clusters
on which we hopefully have connected centers. Data set 2 has 300 data points
to the left of zero, 100 data points to the right. A good clustering for that and
data set 4 would be one in which the density of the data is somehow reflected
in the density of the data.

Finally, a couple of training notes.

• Training Note 1: If ǫ and λ are too big, the cluster centers end up moving
to the centroid of your data. If they are too small, the cluster centers
won’t move into the data. Try changing these values to see if you can get
the clusters to converge in the middle.



9.3. NEURAL GAS 141

• Training Note 2: If the age at which we remove connections is too small,
we end up with a lot of small, disconnected groups of centers. If the age
is too big, you end up with a lot of redundant connections. What is just
right? Try changing those values to see if you can see what we’re referring
to.

9.3.2 Project: Neural Gas

This project explores one application of triangulating a data set: Obtaining a
path preserving representation of a data set.

For example, suppose we have a set of points in IR2 that represents a room.
We have a robot that can traverse the room - the problem is, there are obstacles
in its path. We would like a discretization of the free space so that the robot
can plan the best way to move around the obstacles.

The data set is given in obstacle1.mat, and is plotted below. The areas
where there are no points represent obstacles. Assignment: Use the Neural

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 9.8: The data set that represents the ”free” area. White regions indicate
obstacles.

Gas clustering using 1, 000 data points and 300 cluster centers to try to represent
the obstacle-free area.


