
Review Questions (Exam 2)

1. Define a “voronoi cell” and its relation to data clustering.

SOLUTION: A voronoi cell is defined by its centers, c1, . . . , ck. Then the jth voronoi
cell is the set of x that is closer to cj than any other center- Or,

Vj = {x | ‖x− cj‖ ≤ ci, for i = 1, 2, . . . , k}

Points that lie along the boundary may be left unclassified, or randomly assigned to
bordering cells.

2. Define the “confusion matrix”, and how it is used.

SOLUTION: A confusion matrix is used to assess how well a classification has per-
formed. Normally, the actual classes are listed along the top (columns), and the pre-
dicted classes are down the rows. For example, C(i, j) would be the percent something
in class j was classified as being in class i.

The confusion matrix not only tells us how well we did (diagonal elements), but also
tells us what sorts of errors occurred when the classification was incorrect.

3. What is the basic update rule we use for all our parameters? Hint: We want to go
from αinitial to αfinal in some number (MaxIters) of steps.

SOLUTION: This actually goes back a ways to the n−armed bandit. We said that at
step i:

αi = αinit

(
αfinal

αinit

) i
MaxIters

4. Explain the roles that ε and λ play in the Neural Gas algorithm.

SOLUTION: We said that ε was the maximum amount of “attracting” force, and λ
controlled the spread of the attracting force. Thus, at the beginning of training, ε and
λ are relatively large, and decrease as training progresses.

5. Show that, for all numbers µ, the value that minimizes the (squared) distortion error for
a single cluster is the (arithmetic) mean. You may assume your data is one dimensional,
and that you have only one cluster.

SOLUTION: If our one dimensional data is given as x1, x2, . . . , xp, then the sum of
squares distortion error is

E(µ) =
p∑

k=1

(xk − µ)2

To minimize E, differentiate and set the derivative to zero (find the critical points):

dE

dµ
=

p∑
k=1

2(xk − µ)(−1) = 0 ⇒
p∑

k=1

xk − µ
p∑

k=1

1 = 0 ⇒
p∑

k=1

xk = µ p
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Therefore, the critical point is when

µ =
1

p

p∑
k=1

xk

which is the arithmetic average. Further, if we take the second derivative,

d2E

dµ2
= 2p > 0

Therefore, we have a minimum and not a maximum.

6. Here are 5 points in the matrix X. Initialize the two centers as the first two columns
of X, then perform 1 update, and show there is a decrease in the distortion error.

X =

[
−1 1 1 −2 −1

1 0 2 1 −1

]

SOLUTION: As a computational note, it is easier to find the squared distances, and
the order will remain the same. The EDM of squared distances is

0 5
5 0
5 4
1 10
4 5

 ⇒ Cluster 1: 1, 4, 5
Cluster 2: 2, 3

⇒ C =

[
−4/3 1

1/2 1

]

It takes a little while to compute, but the new EDM shows that the classifications do
not change, and the new distortion errors (squared) are approximately:

0.55, 1.0, 1.0, 0.88, 1.88

We can see that the overall distortion error has decreased.

7. Given the data vector x below and the three centers in C, update the set of centers
using Neural Gas, with ε = λ = 1 (not realistic, but since we’re doing it by hand, we’ll
use easy numbers).

x =

[
1
2

]
C =

[
−1 1 2

1 0 3

]

SOLUTION: First we need the distances between x and the three centers. In order,
we have:

√
5, 2,
√

2, therefore, the third center is closest, and in the notation employed
by our text, we have

s3 = 0 s2 = 1 s1 = 2
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Now update the centers by the index:

c3 =

[
2
3

]
+ 1

[
1− 2
2− 3

]
=

[
1
2

]

c2 =

[
1
0

]
+ e−1

[
1− 1
2− 0

]
=

[
1

2/e

]

c1 =

[
−1

1

]
+ e−2

[
1−−1
2− 1

]
=

[
−1 + 2/e2

1 + 1/e2

]

8. Show that, for the line of best fit, the normal equations produce the same equations
as minimizing an appropriate error function. To be more specific, set the data as
(x1, t1), . . . , (xp, tp) and define the error function first. Minimize the error function to
find the system of equations in m, b. Show this system is the same you get using the
normal equations.

SOLUTION: Done as a homework problem. The model equations are

mx1 + b = t1
mx2 + b = t2

...
...

mxp + b = tp

⇒


x1 1
x2 1

...
...

xp 1


[
m
b

]
=


t1
t2
...
tp

 ⇒ Ac = t

Using the normal equations, we get the following for ATA and AT t:

ATA =

[
x1 x2 . . . xp
1 1 . . . 1

] 
x1 1
x2 1

...
...

xp 1

 =

[ ∑
x2
k

∑
xk∑

xk p

]

AT t =

[
x1 x2 . . . xp
1 1 . . . 1

] 
t1
t2
...
tp

 =

[ ∑
xktk∑
tk

]

where each sum ranges from k = 1 to k = p.

On the other hand, as a Calculus question, we are minimizing the sum of the squared
error:

E(m, b) =
p∑

k=1

(ti − (mxi + b))2

Set the partial derivatives to zero:

∂E

∂m
=

p∑
k=1

2(ti − (mxi + b))(−xi) = 0 ⇒ −
p∑

k=1

xiti +m
p∑

k=1

x2
i + b

p∑
k=1

xi = 0
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And

∂E

∂b
=

p∑
k=1

2(ti − (mxi + b))(−1) = 0 ⇒ −
p∑

k=1

ti +m
p∑

k=1

xi + b
p∑

k=1

1 = 0

Putting the two equations together, we have the system:[ ∑
x2
i

∑
xi∑

xi p

] [
m
b

]
=

[ ∑
xiti∑
ti

]

which is the same as we had before.

9. Given data:
x −1 0 1
y 2 1 1

(a) Give the matrix equation for the line of best fit.

SOLUTION:  −1 1
0 1
1 1

 [ m
b

]
=

 2
1
1


(b) Compute the normal equations.

SOLUTION: [
2 0
0 3

] [
m
b

]
=

[
−1

4

]

(c) Solve the normal equations for the slope and intercept.

SOLUTION: This is easy enough to solve directly- m = −1/2 and b = 4/3.

10. Use the data in Exercise (9) to find the parabola of best fit: y = ax2 + bx+ c. (NOTE:
Will you only get a least squares solution, or an actual solution to the appropriate
matrix equation?)

SOLUTION: This will be a unique solution (invertible matrix), which we can find by
row reduction: 1 −1 1

0 0 1
1 1 1


 a
b
c

 =

 2
1
1

 ⇒

 1 −1 1 2
0 0 1 1
1 1 1 1

→
 1 0 0 1/2

0 1 0 −1/2
0 0 1 1


11. What is Hebb’s rule (the biological version- you can paraphrase)?

In words, Hebb’s rule said:

When an axon of cell A is near enough to excite a cell B and repeatedly
takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.
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In notation, we said that
∆Wij = αyixj

12. What is the Widrow-Hoff learning rule? How is it related to Hebb’s rule?

∆Wij = α(ti − yi)xj
It is an improvement over Hebb’s rule to incorporate the target information.

13. Let W =

[
1 0 1
−1 1 0

]
and b =

[
1
0

]
. If x = [−1, 0, 1]T and t = [2, 3]T , use Widrow-

Hoff to update W,b one time using a learning rate of 1 (This is too big of a learning
rate to actually use, but it will make your computations easier).

SOLUTION: First we need y = Wx + b = [1, 1]T . Now,

W = W + ∆W = W + α(t− y)xT

W =

[
1 0 1
−1 1 0

]
+1·

[
1
2

]
[−1, 0, 1] =

[
1 0 1
−1 1 0

]
+

[
−1 0 1
−2 0 2

]
=

[
0 0 2
−3 1 2

]
And

b = b + α(t− y) =

[
1
0

]
+

[
1
2

]
=

[
2
2

]

14. Let x = [1, 2, 1]T . Find the matrix xxT , its eigenvalues, and eigenvectors. (Also, think
about what happens in the general case, where a matrix is defined by xxT ).

SOLUTIONS:

xxT =

 1 2 1
2 4 2
1 2 1


In computing the determinant, it should simplify to λ2(λ − 6) = 0, so λ = 0 (double
root), and λ = 6.

For λ = 0, we get the null space of A. After row reduction, we have: 1 2 1 0
0 0 0 0
0 0 0 0

 ⇒ E0 = span


 −2

1
0

 ,
 −1

0
1




If λ = 6, after row reduction we get: 1 0 −1 0
0 1 −2 0
0 0 0 0

 ⇒ E6 = span


 1

2
1




(You might notice that all eigenvectors are orthogonal, as predicted by the Spectral
Theorem)
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15. Suppose x is a vector containing n real numbers, and we understand that mx + b is
Matlab-style notation (so we can add a vector to a scalar, done component-wise).

(a) Find the mean of y = mx + b in terms of the mean of x.

SOLUTION:

In our notation, the mean of the data in the vector x is: x̄ = 1
p

∑p
k=1 xk

The mean of the data in vector y would then be:

ȳ =
1

p

p∑
k=1

yk =
1

p

p∑
k=1

(mxi + b) = m
1

p

p∑
k=1

xk +
1

p
bp = mx̄+ b

(b) Show that, for fixed constants a, b, Cov(x + a,y + b) = Cov(x,y)

SOLUTION: Using our previous notation and the previous question,

x + a = x̄+ a y + b = ȳ + b

Therefore,
(xi + a)− x + a = xi − x̄

and similarly for y,
(yi + b)− y + b = yi − ȳ

The covariance is the sum of this product:

1

p− 1

p∑
i=1

(xi − x̄)(yi − ȳ) = Cov(x,y)

Therefore, the covariances are the same.

(c) If y = mx+ b, then find the covariance and correlation coefficient between x and
y.

SOLUTION: Following a similar approach, note that

y = mx + b = mx̄+ b

so that
yi − ȳ = (mxi + b)− (mx̄+ b) = m(xi − x̄)

Now the covariance between x and y is given by

sxy =
1

p− 1

p∑
i=1

(xi − x̄)(yi − ȳ) =
1

p− 1

p∑
i=1

(xi − x̄)(m(xi − x̄)) =

m
1

p− 1

p∑
i=1

(xi − x̄)2 = ms2
x
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For the correlation coefficient, we’ll need the variance of y:

s2
y =

1

p− 1

p∑
i=1

(yi − ȳ)2 =
1

p− 1

p∑
i=1

m2(xi − x̄)2 = m2s2
x

so that sy =
√
m2sx = |m|sx.

Now for the correlation coefficient:

rxy =
sxy
sxsy

=
ms2

x

sxsy
=

ms2
x

sx|m|sx
=

m

|m|
= signum(m) =

{
1 if m > 0
−1 if m < 0

16. Show that the affine mapping: f(x) = Wx+b can be written as a linear mapping Ŵ x̂
for an appropriate Ŵ and x̂

SOLUTION: Define

Ŵ = [W | b ] and x̂ =

[
x
1

]

Then Ŵ x̂ = Wx + b.

17. What does “training” mean in terms of our mathematical model?

SOLUTION: To train a network means to find values of the parameters of the model
so that we minimize some error function (usually sum of squares error). In terms of
the linear network, the parameters were the weights W and bias b.

18. If we use all the data we have at once, what kind of training are we doing? If we learn
one data point at a time, what kind of training are we doing?

SOLUTION: This is batch training vs online training.

19. Suppose I have some data in IR3 that belongs to 4 different classes. Do I want my
targets to be the real numbers 1, 2, 3, 4, or are there better ways to build the target
values?

SOLUTION: In our examples, if we had k classes, then we used targets in IRk. For
example, class 1 corresponded to ~e1 (the first column of the k × k identity matrix, or
the first standard basis vector of IRk), the second class corresponded to ~e2, and so on.

20. Given the function z = f(x, y), show that the direction in which f decreases the fastest
from a point (a, b) is given by the negative gradient (evaluated at (a, b)).

SOLUTION: Evaluating the direction derivative in an arbitrary direction u (where u
is a unit vector), we get:

Duf(a, b) = ∇f(a, b) · u = ‖∇f(a, b)‖ cos(θ)

where θ is the angle between u and ∇f(a, b). This is a minimum when cos(θ) =
−1, or when θ = π, which occurs if u = −∇f(a, b)/‖∇f(a, b)‖ (normalized to have
unit length). In this case, we see that the value of the directional derivative is then
−‖∇f(a, b)‖.
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21. Illustrate the technique of gradient descent using

f(x, y) = x2 + y2 − 3xy + 2

(a) Find the minimum.

SOLUTION: Set the partial derivatives to zero for the critical points:

fx = 2x− 3y = 0
fy = 2y − 3x = 0

⇒ (x, y) = (0, 0)

NOTE: Continuing with this, fxxfyy − f 2
xy = 4− 9 < 0 and fxx > 0, so the origin

is a minimum.

(b) Use the initial point (1, 0) and α = 0.1 to perform two steps of gradient descent
(use your calculator).

SOLUTION: Step 1 (Notice the negative sign! If we were trying to maximize the
error, that would be addition instead):

x = x− α∇f =

[
1
0

]
− 1

10

[
2
−3

]
=

[
4/5
3/10

]

After the second step, we get x = 0.73 and y = 0.48.

22. Suppose we have a subspace W spanned by an orthonormal set of non-zero vectors,
v1,v2,v3, each is in IR1000. If a vector x is in W , then there is a low dimensional (three
dimensional in fact) representation of x. What is it?

SOLUTION: Short answer- The low dimensional representation is the set of coordinates
for x. That is, if x ∈ W , then

x = c1v1 + c2v2 + c3v3 → (c1, c2, c3)

23. Let the matrix A be defined below.

A =

 1 1
2 1
3 1


(a) Find the psuedoinverse of A

SOLUTION: The pseudoinverse is from solving the normal equations (if A is full
rank, which it is in this case, the rank is 2 and cannot be any bigger). Then

A† = (ATA)−1AT where ATA =

[
14 6
6 3

]

Now, we do the indicated operations:

(ATA)−1AT =
1

6

[
3 −6
−6 14

] [
1 2 3
1 1 1

]
=

1

6

[
−3 0 3

8 2 −4

]
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(b) Using the A from the previous exercise, consider the vector [−1, 0, 1]T . Is the
vector in the column space of A? If so, provide its coordinates with respect to
the columns of A (for the basis).

SOLUTION: We can check directly by row reducing: 1 1 −1
2 1 0
3 1 1

 ⇒

 1 0 1
0 1 −2
0 0 0

 ⇒

 −1
0
1

 =

 1
2
3

− 2

 1
1
1


Therefore, the coordinates are (1,−2).

(c) What happens if we try to project [1,−2, 1]T into the column space of A? Explain
in terms of fundamental subspaces.

SOLUTION: If you don’t see that the vector is orthogonal to the columns of A,
you can row reduce:  1 1 1

2 1 −2
3 1 1

 ⇒

 1 0 0
0 1 0
0 0 1


From this, we can at least conclude that the new vector is linearly independent
of the columns of A. Checking, we see that it is orthogonal, so that [1,−2, 1]T

is in null space of AT , so projecting it into the column space would give the zero
vector.

24. Consider the underdetermined “system of equations”: x+3y+4z = 1. In matrix-vector
form Ax = b, write the matrix A first.

(a) What is the dimension of each of the four fundamental subspaces?

SOLUTION: First, we note that the domain is IR3 and the codomain is IR1. The
dimension of the row space is 1, since A only has one row, and so that is also the
rank of A and the dimension of the column space. That leaves the null space of
A to have dimension 2 and the null space of AT is simply ~0 (or 0 dimensional).

(b) Find bases for the four fundamental subspaces.

SOLUTION:

A basis for the row space is the row, [1, 3, 4]T (written as a column vector).

The null space is spanned by [−3, 1, 0]T and [−4, 0, 1]T .

The column space is spanned by the number 1.

The null space of AT is only the zero vector.

(c) Find a solution with at least 2 zeros (the slash command in Matlab looks for
answers with the most zeros).

SOLUTION: You can find them by inspection. For example, (1, 0, 0) is a solution,
as is (0, 0, 1/4).
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(d) Find a 3× 3 matrix P so that given a vector x, Px is the projection of x into the
row space of A.

SOLUTION: This will be a projection matrix into the space spanned by a single
vector. In the notes, we had:

P =
aaT

aTa
=

1

26

 1 3 4
3 9 12
4 12 16



25. (Eigenvalues) Find the eigenvalues and eigenvectors for A =

[
0 1
2 1

]
SOLUTION: First we compute the characteristic equation, |A−λI| = 0, or λ2−λ−2 =
0, from which λ = 2 or λ = −1.

For λ = 2, we find the null space of A− 2I. Below, we’ll use v1 as free (but you could
use either). [

−2 1 0
2 −1 0

]
⇒ v1 = v1

v2 = 2v1
⇒ E2 = span

{[
1
2

]}

Similarly, you should find that E−1 is the span of [−1, 1]T .

26. (Eigenvalues) Verify the 4 results of the Spectral Theorem for A =

[
2 1
1 2

]
SOLUTION: As we said in class, for now we only look at the first three items:

• The eigenvalues are all real. You should find λ = 3 and λ = 1.

• The algebraic and geometric multiplicities are equal: The eigenspaces are each
1-dimensional.

• The eigenspaces are the following, and the basis vectors are orthogonal:

E1 = span

{[
−1

1

]}
E3 = span

{[
1
1

]}

27. (Eigenvalues) If λi is an eigenvalue of ATA, then show that λi ≥ 0 by showing that, if
vi is an eigenvector for λi, then ‖Avi‖2 = λi (and lengths cannot be negative).

SOLUTION: Use the multiplicative form of the norm. That is,

‖x‖2 = xTx

Therefore,

‖Avi‖2 = (Avi)
TAvi = vT

i A
TAvi = vT

i (ATAvi) = λiv
T
i vi = λi‖vi‖2

The left side of the equation is positive, so the right side must be as well. If we
assume additionally that vi is a unit vector (which is common), then we get the desired
expression.
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28. (Eigenvalues) If vi and vj are eigenvectors corresponding to distinct eigenvalues of
ATA, then show that Avi ⊥ Avj.

SOLUTION: Let’s start backwards. We want to show that:

(Avi)
TAvj = 0 ⇔ vT

i A
TAvj = 0 ⇔ λjv

T
i vj = 0

The last statement is true because ATA is symmetric, and is from the Spectral Theorem
(eigenvectors from distinct eigenvalues are orthogonal).

29. (Eigenvalues) Suppose that λi,vi are eigenvalue/eigenvectors for a symmetric matrix
ATA (so the Spectral Theorem applies). Prove that, if x = α1v1 + . . . αnvn, then

‖Ax‖2 = α2
1λ1 + . . .+ α2

nλn

SOLUTION: We could prove this directly, but we have already proven the Pythagorean
Theorem, so let’s use that. We will assume that the eigenvectors are unit vectors.

x = α1v1 + . . . αnvn ⇒ Ax = α1Av1 + . . . αnAvn

From Exercise 28, we know these are all orthogonal, so the Pythagoream theorem
applies:

‖Ax‖2 = ‖α1Av1‖2 + . . . ‖αnAvn‖2 = α2
1‖Av1‖2 + . . . α2

n‖Avn‖2

And from Exercise 27, we know that ‖Avi‖2 = λi‖vi‖2 = λi, so that the equation
above simplifies to what we want:

‖Ax‖2 = α2
1λ1 + . . .+ α2

nλn

30. (Eigenvalues) Prove that if λi is an eigenvalue of ATA, then λi is also an eigenvalue of
AAT (Hint: Let ui = Avi, where vi is an eigenvector associated with λi).

SOLUTION: We want to show that AATw = λiw for some vector w (we’re given a
hint about w). First, from the definition of an eigenvalue:

ATAvi = λivi

Multiply both sides by the matrix A:

AATAvi = λiAvi ⇒ AAT (Avi) = λi(Avi) ⇒ AATui = λiui
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