
Chapter 3

Statistics

As we have discussed previously, statistics will naturally emerge when we have to deal either with models
that have random characteristics, or with data that may incorporate some kind of random noise. Generally
speaking, models will typically involve a deterministic component and a random component.

In this section, we’ll briefly give an overview of some common statistical vocabulary and computations.

3.1 Functions that Define Data

The basic way of defining non-deterministic data is through the use of a probability density function, or pdf.

Example 1: Given a fair dice, the probablity of rolling any number from 1 to 6 is equally likely. If we
let f(x) be the probability that we get x, then in this case:

f(1) = f(2) = f(3) = f(4) = f(5) = f(6) =
1

6

In this case, f is our pdf.

Example 2: Given the 14 points:

{1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 1}

we might deduce that the probability of having “1” is 6/14, the probability of getting a “2” is 5/14, and the
probability of getting a 3 is 3/14. Thus the pdf is:

f(1) =
6

14
f(2) =

5

14
f(3) =

3

14

In this case, we would assume that the process generating these numbers is adequately represented by this
set- For example, the process is only generating the numbers 1, 2 and 3, and we have sampled long enough to
get a good approximation to the frequency of each number. This is what is called a “frequentist” approach
to building a probability density function.

Definition: A (continuous) function f(x) is said to be a probability density function if it satisfies the
following conditions:

1. f(x) is always non-negative.

2.
�∞
−∞ f(x) dx = 1
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3. The probability of an event between values x = a and x = b is given by:

Pr(a ≤ X ≤ b) =

� b

a

f(x) dx

Definition: A discrete probability density function will be a finite set of numbers, {P1, P2, . . . , Pk}, so that:

1. Pi is non-negative, for all i.

2.

k�

i=1

Pk = 1

Let’s take a look at some template probability distributions:

• The Uniform Distribution

– The Continuous Version:

f(x) =

�
1

b−a , if a ≤ x ≤ b

0, otherwise

– The Discrete Version (using N bins over the same interval):

Pr

�
a+ (i− 1)

b− a

N
≤ x ≤ a+ i

b− a

N

�
=

1

N
= Pi, i = 1, 2, . . . , N.

– In Matlab, to obtain a value from a uniform distribution over [0, 1], we type x = rand

• The Normal (or Gaussian) Distribution

– The Continuous Version: The Normal distribution with mean µ and variance σ2 (to be defined
shortly) is defined as:

f(x) =
1√
2π σ

exp

�−(x− µ)2

σ2

�

This is the common “bell-shaped curve”; the constant in the front is needed to make the integral
evaluate to 1. Note that the normal distribution with zero mean and variance 1 simplifies to:

f(x) = N (0, 1) =
1√
2π

e−x2

– In Matlab, we can obtain values from a normal distribution with zero mean and unit variance by
x = randn.

• The Double Laplacian.

Our last example we define only in the continuous case. It is the p.d.f. commonly used to model the
human voice, and is called the double Laplacian distribution:

f(x) =

�
Ke−|x|, −1 ≤ x ≤ 1
0, otherwise

In the exercises, you’ll be asked to determine the value of K, and we’ll also see how the shape of the
Laplacian compares to a normal distribution.
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3.1.1 The probability distribution function

The probability distribution function (a.k.a. distribution function, cumulative distribution function) is de-
fined via the probability density function:

F (X) = Pr(−∞ < X < x) =

� x

−∞
f(t) dt

We note that:

• By the Fundamental Theorem of Calculus, part I, F (x) is the antiderivative of f(x).

• F (x) is strictly increasing, going from a minimum of zero to a maximum of 1.

• To minimize confusion between terms, we’ll refer to F (x) as the distribution function, or cumulative
distribution function. We’ll also reserve capitalized letters for the distribution function, and small-case
letters for the probability density function.

3.2 The Mean, Median, and Mode

The most basic way to characterize a data set is through one number- the mean (or median or mode).

• The Sample Mean for a discrete set of m numbers, x1, . . . , xm is given by:

x̄ =
1

m

m�

k=1

xk

We will typically use the sample mean rather than the population mean, which is defined using the
underlying pdf:

µ = E(X) =
�

all x

xf(x)

You might remember this formula by seeing that this is really a weighted average, with those events
most probable getting a higher weight than events less probable.

Also, if your data is being drawn independently from a fixed p.d.f., then the sample mean will converge
to the population mean, as the number of samples gets very large.

Suppose we have m vectors in IRn. we can similarly define the (sample) mean, just replace the scalar
xk with the kth vector:

x̄ =
1

m

m�

k=1

x(k)

The jth element of the sample mean vector is just the sample mean of the (scalar) data in the jth

dimension of your collection of vectors.

In Matlab, the mean is a built-in function. The command is mean, and the output depends on whether
you input a vector or a matrix of data.

For vectors, mean(x) outputs a scalar.

m=mean(X,1); %Returns a row vector

m=mean(X,2); %Returns a column vector

For matrices, one can compute a row mean (which is a row), a column mean (which is a column) or
a grand mean. In this context, the grand mean of a matrix is found by taking the mean of all the
entries of the matrix, so the grand mean of a matrix is a scalar.

See the end of this section for more on mean subtracting a matrix of data.
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• The Median is a number so that exactly half the data is above that number, and half the data is below
that number. Although the median does not have to be unique, we follow the definitions below if we
are given a finite sample:

If there are an odd number of data points, the median is the middle point. If there is an even number
of data points, then there are two numbers in the middle- the median is the average of these.

Although not used terribly often, Matlab will perform the median as well as the mean:

m=median(X);

where the output is a scalar if X is a vector, or a row vector if X is a matrix.

• The Mode is the value taken the most number of times. In the case of ties, the data is multi-modal.

We’ll compare these definitions in the Exercises.

3.2.1 Centering and Double Centering Data

Let matrix A be n×m, which may be considered n points in Rm or m points in IRn. If we wish to look at
A both ways, a double-centering may be appropriate.

The result of the double-centering will be that (in Matlab), we determine Â so that

mean(Â, 1) = 0, mean(Â, 2) = 0

The algorithm is (in Matlab):

%Let A be n times m

[n,m]=size(A);

rowmean=mean(A);

A1=A-repmat(rowm,n,1);

colmean=mean(A1,2);

Ahat=A1-repmat(colmean,1,m);

or, equivalently:

%Let A be n times m

[n,m]=size(A);

colmean=mean(A,2);

A1=A-repmat(colmean,1,m);

rowmean=mean(A1,1);

Ahat=A1-repmat(rowmean,n,1);

Proof: For the first version (row mean first):
Let A1 be the matrix A with the row mean b subtracted:

A1 =




a11 − b1 a12 − b2 · · · a1m − bm
a21 − b1 a22 − b2 · · · a2m − bm

...
...

an1 − b1 an2 − b2 · · · anm − bm




with

bj =
1

n

n�

i=1

aij
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Now define c as the column mean of A1. Mean subtraction of this column results in the Â, written
explicitly as:

Â =




a11 − b1 − c1 a12 − b2 − c1 · · · a1m − bm − c1
a21 − b1 − c2 a22 − b2 − c2 · · · a2m − bm − c2

...
...

an1 − b1 − cn an2 − b2 − cn · · · anm − bm − cn




By definition, the column mean of Â is zero. Is the new row mean zero? It is clear that the new row mean
is zero iff

�
k ck = 0, which we now show:

Proof that

n�

k=1

ck = 0

We explicitly write down what ck is:

ck =
1

m

m�

j=1

(akj − bj)

and substitute the expression for bj ,

ck =
1

m

m�

j=1

�
akj −

1

n

n�

i=1

aij

�
=

1

m

m�

j=1

akj −
1

mn

m�

j=1

n�

i=1

aij

Now sum over k:
n�

k=1

ck =

n�

k=1


 1

m

m�

j=1

akj −
1

mn

m�

j=1

n�

i=1

aij


 =

1

m

n�

k=1

m�

j=1

akj −
n

mn

m�

j=1

n�

i=1

aij = 0

It may be clear that these two methods produce the same result (e.g., row subtract first, then column
subtract or vice-versa). If we examine the (i, j)th entry of Â,

Âij = aij − bj − ci = aij −
1

n

n�

k=1

akj −
1

m

m�

k=1

aik +

m�

r=1

n�

s=1

ars

Therefore, to double center a matrix of data, each element has subtracted from it its corresponding row
mean and column mean, and we add back the average of all the elements.

As a final note, this technique is only suitable if it is reasonable that the m × n matrix may be data in
either IRn or IRm. For example, you probably would not double center a data matrix that is 5000× 2 unless
there is a specific reason to do so.

Example

Let the matrix be defined below. Verify that the row mean, column mean are vectors with all 1’s and the
grand mean is 1 as well. After that, double center the array.

�
3 0 −1 2

−1 2 3 0

�

SOLUTION: Computing the means, we see that the row mean is [1111] the column mean is [1, 1]T and the
grand mean is also 1! Double centering means we’ll subtract the row and column mean, then add back in
the grand mean. In this special matrix, that means that we’ll subtract 1 from every value:

�
3 0 −1 2

−1 2 3 0

�
→

�
2 −1 −2 1

−2 1 2 −1

�

Now you should notice that the new row mean and new column mean are vectors with all zeros.
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3.3 The Variance and Standard Deviation

The number that is used to describe the spread of the data about its mean is the variance. As with the
mean, we rarely know the underlying distribution, so again we’ll focus on the sample variance.

Let {x1, . . . , xm} be m real numbers. Then the sample variance is:

s2 =
1

m− 1

m�

k=1

(xk − x̄)2

where x̄ is the mean of the data. If we think of the data as a vector of length m, then this formula becomes:

s2 =
1

m− 1
�x− x̄�2

To be complete, we include the population variance below:

σ2 = E((x− µ)2) =
�

all x

(x− µ)2f(x)

Finally, the standard deviation is the square root of the variance, so the standard deviation is σ.

Quick Example

Let’s take some template data to look at what the variance (and standard deviation) measure: Consider the
data:

− 2

n
,− 1

n
, 0,

1

n
,
2

n

If n is large, our data is tightly packed together about the mean, 0. If n is small, the data are spread out.
The variance of this sample is:

s2 =
1

4

�
4 + 1 + 0 + 1 + 4

n2

�
=

5

2

1

n2

so that the standard deviation is:

s =

�
5

2

1

n

and this is in agreement with our heuristic: If n is large, our data is tightly packed about the mean, and the
standard deviation is small. If n is small, our data is loosely distributed about the mean, and the standard
deviation is large. Another way to look at the standard deviation is in linear algebra terms: If the data is
put into a vector of length m (call it x), then the (sample) standard deviation can be computed as:

s =
�x�√
m− 1

3.3.1 Covariance and Correlation Coefficients

If we have two data sets, sometimes we would like to compare them to see how they relate to each other. In
this case, it is important that the two data sets be ordered so that x1 is being compared to y1, then x2 is
compared to y2, and so on.

Definition: Let X = {x1, . . . , xn} , Y = {y1, . . . , yn} be two ordered data sets with means mx,my

respectively. Then the sample covariance of the data sets is given by:

Cov(X,Y ) = s2xy =
1

n− 1

n�

k=1

(xk −mx)(yk −my)
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There are exercises at the end of the chapter that will reinforce the notation and give you some methods
for manipulating the covariance. In the meantime, it is easy to remember this formula if you think of the
following:

If X and Y have mean zero, and we think of X and Y as vectors x and y, then the covariance is just the
dot product between the vectors, divided by n− 1:

Cov(x,y) =
1

n− 1
xTy

We can then interpret what it means for X,Y to have a covariance of zero: x is “orthogonal” to y.
Continuing with this analogy, if we normalized by the size of x and the size of y, we’d get the cosine of the
angle between them. This is the definition of the correlation coefficient, and gives the relationship between
the covariance and correlation coefficient:

Definition: The correlation coefficient between x and y is given by:

rxy =
s2xy
sxsy

=

�n
k=1(xk −mx)(yk −my)��n

k=1(xk −mx)2 ·
�n

k=1(yk −my)2

Again, thinking of X,Y as having zero mean and placing the data in vectors x,y, then this formula becomes:

rxy =
xTy

�x� · �y� = cos(θ)

This works out so nicely because we have a 1
n−1 in both the numerator and denominator, so they cancel

each other out.
We also see immediately that rxy can only take on the real numbers between −1 and 1. Some interesting

values of rxy:

If rxy is: Then the data is:
1 Perfectly correlated (θ = 0)
0 Uncorrelated (θ = π

2 )
-1 Perfectly (negatively) correlated (θ = π)

One last comment before we leave this section: The covariance s2xy and correlation coefficient rxy only
look for linear relationships between data sets!

For example, we know that sin(x) and cos(x) (as functions, or as data points sampled at equally spaced
intervals) will be uncorrelated, but, because sin2(x) + cos2(x) = 1, we see that sin2(x) and cos2(x) are
perfectly correlated.

This difference is the difference between the words “correlated” and “statistically independent”. Statisti-
cal independence (not defined here) and correlations are not the same thing! We will look at this difference
closely in a later section.

3.4 The Covariance Matrix

If we have p data points in IRn, we can think of the data as a p×n matrix. Let X denote the mean-subtracted
data matrix (as we defined previously). A natural question to ask is then how the ith and jth dimensions
(columns) covary- so we’ll compute the covariance between the i, j columns to define:

s2ij =
1

p− 1

p�

k=1

X(k, i) ·X(k, j)

Computing this for all i, j will result in an n× n symmetric matrix, C, for which:

Cij = s2ij
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In the exercises, you’ll show that an alternative way of computing the covariance matrix is by using what
we’ll refer to as its definition:

Definition: Let X denote a matrix of data, so that, if X is p × n, then we have p data points in IRn.
Furthermore, we assume that the data in X has been mean subtracted (so the mean in IRn is the zero
vector). Then the covariance matrix associated with X is given by:

C =
1

p− 1
XTX

In Matlab, it is easy to compute the covariance matrix. For your convenience, we repeat the mean-
subtraction routine here:

%X is a pxn matrix of data:

[p,n]=size(X);

m = mean(X);

Xm = X-repmat(m,p,1);

C=(1/(p-1))*X’*X;

Matlab also has a built-in covariance function. It will automatically do the mean-subtraction (which is
a lot of extra work if you’ve already done it!).

C=cov(X);

If you forget which sizes Matlab uses, you might want to just compute the covariance yourself. It assumes,
as we did, that the matrix is p×n, and returns an n×n covariance, and it will divide by p−1 (some algorithm
divide only by p).

3.5 Exercises

1. By hand, compute the mean and variance of the following set of data:

1, 2, 9, 6, 3, 4, 3, 8, 4, 2

2. Obtain a sampling of 1000 points using the uniform distribution: and 1000 points using the normal
distribution:

x=rand(1000,1);

y=randn(1000,1);

Compare the distributions using Matlab’s hist command: hist([x y],100) and print the results.
You’ll note that the histograms have not been scaled so that the areas sum to 1, but we do get an
indication of the nature of the data.

3. Compute the value of K in the double Laplacian function so that f is a p.d.f.

4. Next, load a sample of human voice: load laughter If you type whos, you’ll see that you have a vector
y with the sound data. The computers in the lab do have sound cards, but they don’t work very well
with Matlab, so we won’t listen to the sample. Before continuing, you might be curious about what
the data in y looks like, so feel free to plot it. We want to look at the distribution of the data in the
vector y, and compare it to the normal distribution. The mean of y is already approximately zero, but
to get a good comparison, we’ll take a normal distribution with the same variance:
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clear

load laughter

whos

sound(y,Fs); %This only works if there’s a good sound card

s=std(y);

x=s*randn(size(y));

hist([x y],100); %Blue is "normal", Red is Voice

Print the result. Note that the normal distribution is much flatter than the distribution of the voice
signal.

5. Compute the covariance between the following data sets:

x −1.0 −0.7 −0.4 −0.1 0.2 0.5 0.8
y −1.3 −0.7 −0.1 0.5 1.1 1.7 2.3

(3.1)

6. Let x be a vector of data with mean µ, and let a, b be scalars. What is the mean of ax? What is the
mean of x+ b? What is the mean of ax+ b?

NOTE: Formally, the addition of a vector and a scalar is not defined. Here, we are utilizing Matlab
notation: The result of a vector plus a scalar is addition done component-wise. This is only done with
scalars- for example, a matrix added to a vector is still not defined, while it is valid to add a matrix
and a scalar.

7. Let x be a vector of data with variance σ2, and let a, b be scalars. What is the variance of ax? What
is the variance of x+ b? What is the variance of ax+ b?

8. Show that, for data in vectors x, y and a real scalar a,

Cov(ax, y) = aCov(x, y) Cov(x, by) = bCov(x, y)

9. Show that, for data in x and a vector consisting only of the scalar a,

Cov(x, a) = 0

10. Show that, for a and b fixed scalars, and data in vectors x,y,

Cov(x+ a, y + b) = Cov(x, y)

11. If the data sets X and Y are the same, what is the covariance? What is the correlation coefficient?
What if Y = mX? What if Y = mX + b?

12. Let X be a p× n matrix of data, where we n columns of p data points (you may assume each column

has zero mean). Show that the (i, j)th entry of
1

p− 1
XTX is the covariance between the ith and jth

columns of X. HINT: It might be convenient to write X in terms of its columns,

X = [x1,x2, . . . ,xn]

Also show that 1
p−1X

TX is a symmetric matrix.

13. This exercise shows us that our geometric insight might not extend to high dimensional space. We
examine how points are distributed in high dimensional hypercubes and unit balls. Before we begin,
let us agree that a hypercube of dimension n has the edges:

(±1,±1,±1, . . . ,±1)T

so, for example, a 2-d hypercube (a square) has edges:

(1, 1)T , (−1, 1)T , (1,−1)T , (−1,−1)T
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(a) Show that the distance (standard Euclidean) from the origin to a corner of a hypercube of dimen-
sion d is

√
d. What does this imply about the shape of the “cube”, as d → ∞?

(b) The volume of a d−dimensional hypersphere of radius a can be written as:

Vd =
Sda

d

d

where Sd is the d−dimensional surface area of the unit sphere.

First, compute the volume between hyperspheres of radius a and radius a− �.

Next, show that the ratio of this volume to the full volume is given by:

1−
�
1− �

a

�d

What happens as d → ∞?

If we have 100,000 data points “uniformly distributed” in a hypersphere of dimension 10,000,
where are “most” of the points?

3.6 Linear Regression

In this section, we examine the simplest case of fitting data to a function. We are given p pairs of data (t is
for “target”, we’ll use y for something else):

(x1, t1), (x2, t2), . . . (xp, tp)

We wish to find a line through the data. That is, we want to find scalars m, b so that

mxi + b = ti

for each pair (xi, ti). Of course, if the data actually was on a line, we would not need p points- only two are
needed.

Thus, we assume that there is something going on so that the data is not exactly linear (statisticians
would add �i to the end of our line to account for noise). Thus, for each point, we now have an error. We
are distinguishing now between the point on the line:

yi = mxi + b

and the desired value ti. Now the error at the ith point is defined as:

(ti − yi)
2 = (ti − (mxi + b))2

and the overall error is the sum of squares error (summed over the p points):

E(m, b) =

p�

k=1

(tk − (mxk + b))2

We have now translated our problem into a Calculus problem- Find the minimum of E(m, b). Here are some
exercises to lead you to the solution:

Exercises with the Regression Error

1. E is a function of m and b, so the minimum value occurs where

∂E

∂m
= 0

∂E

∂b
= 0
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Show that this leads to the system of equations: (the summation index is 1 to p)

m
�

x2
k + b

�
xk =

�
xktk

m
�

xk + bn =
�

tk

2. Using linear algebra, given the data, then in finding the line of best fit, we are trying to solve the
system of equations below, where we then write the system in matrix-vector form:

mx1 + b = t1
mx2 + b = t2
mx3 + b = t3

...
...

mxp + b = tp

⇒




x1 1
x2 1
x3 1
...

...
xp 1




�
m
b

�
=




t1
t2
...

tp


 ⇒ Ac = t

As we said before, the data does not lie exactly on a line (otherwise we would only need two points).
That means that this system of equations has no solution. However, if we think of varying the vector
of unknowns c, we might define the model output as y:

y = Ac

Now we can define the error as:

E(c) = �t− y�2 = �t−Ac�2

and now we will find c that minimizes this error- In linear algebra, this is known as the least squares
solution to the equation Ac = t. We will revisit this again later using projections, but for now, we can
solve this problem using the normal equations. That is, we will multiply both sides of our equation
by AT to get:

Ac = t ⇒ ATAc = AT t

Originally, A was p×2, so now ATA is 2×2, which we can invert. EXERCISE: Show that this system of
two equations in two variables is the same as the system we obtained by setting the partial derivatives
to zero.

3. Consider the following data set [11] which relates the index of exposure to radioactive contamination
from Hanford to the number of cancer deaths per 100, 000 residents. We would like to get a relationship
between these data.

County/City Index Deaths

Umatilla 2.5 147
Morrow 2.6 130
Gilliam 3.4 130
Sherman 1.3 114
Wasco 1.6 138
Hood River 3.8 162
Portland 11.6 208
Columbia 6.4 178
Clatsop 8.3 210
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