Solve the linear first order system $\mathrm{x}^{\prime}=A \mathrm{x}$

Given

$$
\begin{aligned}
& x_{1}^{\prime}=a x_{1}+b x_{2} \\
& x_{2}^{\prime}=c x_{1}+d x_{2}
\end{aligned} \Leftrightarrow\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \Leftrightarrow \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

Then we could solve the system in three ways:

- Convert the system to 2 d order DE of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$, and solve.
- Could try to write the system in implicit form:

$$
\frac{d x_{2}}{d x_{1}}=\frac{d x_{2} / d t}{d x_{1} / d t}=\frac{c x_{1}+d x_{2}}{a x_{1}+b x_{2}}
$$

Then we could try to use a first order method.

- Use the eigenvalues and eigenvectors from the matrix A. This is summarized below for 2×2 matrices.

Eigenvalues and Eigenvectors

- Definition: Given an $n \times n$ matrix A, if there is a constant λ and a non-zero vector \mathbf{v} so that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

then λ is an eigenvalue, and \mathbf{v} is an associated eigenvector for matrix A. Note that an eigenvector is not uniquely determined; we usually choose the simplest vector (integer valued if possible).

- If we try to solve our equation:

$$
\begin{equation*}
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \quad \text { or } \quad(A-\lambda I) \mathbf{v}=\mathbf{0} \tag{1}
\end{equation*}
$$

This system has a non-trivial (non-zero) solution for v_{1}, v_{2} only if the determinant is zero (so that $A-\lambda I$ is not invertible):

$$
|A-\lambda I|=0
$$

And this is the characteristic equation, and simplifying it will give you an $n^{\text {th }}$ degree polynomial in λ, which we solve for the eigenvalues.
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the characteristic equation becomes:

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0 \quad \Leftrightarrow \lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0
$$

where $\operatorname{Tr}(A)$ is the trace of A (which we defined as $a+d$). For each λ, we must go back and solve Equation (1).

- Given a λ and \mathbf{v}, the generalized eigenvector \mathbf{w} is computed as the solution to

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

and in the 2×2 case, it is used when λ has algebraic multiplicity 2 , but geometric multiplicity 1 (a double root with only one eigenvector).

Summary

To solve $\mathbf{x}^{\prime}=A \mathbf{x}$, find the trace, determinant and discriminant for the matrix A. The eigenvalues are found by solving the characteristic equation:

$$
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0 \quad \lambda=\frac{\operatorname{Tr}(A) \pm \sqrt{\Delta}}{2}
$$

The solution is one of three cases, depending on Δ :

- Real λ_{1}, λ_{2} give two eigenvectors, $\mathbf{v}_{1}, \mathbf{v}_{2}$:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} \mathrm{e}^{\lambda_{2} t} \mathbf{v}_{2}
$$

- Complex $\lambda=a+i b, \mathbf{v}$ (we only need one):

$$
\mathbf{x}(t)=C_{1} \operatorname{Real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{Imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)
$$

- One eigenvalue, one eigenvector \mathbf{v}. Compute the generalized eigenvector $\mathbf{w},(A-$ $\lambda I) \mathbf{w}=\mathbf{v}$. Then

$$
\mathbf{x}(t)=\mathrm{e}^{\lambda t}\left(C_{1} \mathbf{v}+C_{2}(t \mathbf{v}+\mathbf{w})\right)
$$

You might find this helpful- Below there is a chart comparing the solutions from Chapter 3 to the solutions in Chapter 7:

	Chapter 3	Chapter 7
Form:	$a y^{\prime \prime}+b y^{\prime}+c y=0$	$\mathbf{x}^{\prime}=A \mathbf{x}$
Ansatz:	$y=\mathrm{e}^{r t}$	$\mathbf{x}=\mathrm{e}^{\lambda t} \mathbf{v}$
Char Eqn:	$a r^{2}+b r+c=0$	$\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0$
Real Solns	$y=C_{1} \mathrm{e}^{r_{1} t}+C_{2} \mathrm{e}^{r_{2} t}$	$\mathbf{x}(t)=C_{1} \mathrm{e}^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} \mathrm{e}^{\lambda_{2} t} \mathbf{v}_{2}$
Complex	$y=C_{1} \operatorname{Re}\left(\mathrm{e}^{r t}\right)+C_{2} \operatorname{Im}\left(\mathrm{e}^{r t}\right)$	$\mathbf{x}(t)=C_{1} \operatorname{Re}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$
Repeated Root	$y=\mathrm{e}^{r t}\left(C_{1}+C_{2} t\right)$	$\mathbf{x}(t)=\mathrm{e}^{\lambda t}\left(C_{1} \mathbf{v}+C_{2}(t \mathbf{v}+\mathbf{w})\right)$

Exercise Set 3

1. Verify that the following function solves the given system of DEs:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \mathbf{x}
$$

2. For each matrix, find the eigenvalues and eigenvectors (these are selected from 16-23, p. 384 in the textbook). Note that they could be complex, and the matrix A may have complex numbers. Try the last one to see if you can do it!
(a) $A=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{rr}1 & i \\ -i & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$
(e) $A=\left[\begin{array}{rr}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right]$
(c) $A=\left[\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right]$
(f) $A=\left[\begin{array}{rrr}3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$
3. For each given λ and \mathbf{v}, find an expression for $\operatorname{Re}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$ and $\operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$:
(a) $\lambda=3 i, \mathbf{v}=[1-i, 2 i]^{T}$
(c) $\lambda=2-i, \mathbf{v}=[1,1+2 i]^{T}$
(b) $\lambda=1+i, \mathbf{v}=[i, 2]^{T}$
(d) $\lambda=i, \mathbf{v}=[2+3 i, 1+i]^{T}$
4. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. Furthermore, classify the origin as a sink, source, saddle, or none of the above.
(a) $\lambda=-2,3 \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(b) $\lambda=-2,-2 \quad \mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(c) $\lambda=2,-3 \quad \mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
5. Give the general solution to each system $\mathrm{x}^{\prime}=A \mathrm{x}$ using eigenvalues and eigenvectors, and sketch a phase plane (solutions in the x_{1}, x_{2} plane). Identify the origin as a sink, source or saddle:
(a) $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{rr}-6 & 10 \\ -2 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{rr}8 & 6 \\ -15 & -11\end{array}\right]$
6. (Extra Practice) For each system below, find y as a function of x by first writing the differential equation as $d y / d x$.
(a) $\begin{aligned} x^{\prime} & =-2 x \\ y^{\prime} & =y\end{aligned}$
(c) $\begin{aligned} x^{\prime} & =-(2 x+3) \\ y^{\prime} & =2 y-2\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=y+x^{3} y \\ & y^{\prime}=x^{2}\end{aligned}$
(d) $\begin{aligned} & x^{\prime}=-2 y \\ & y^{\prime}=2 x\end{aligned}$
