Solve the linear first order system $\mathbf{x}' = A\mathbf{x}$

Given

$$\begin{array}{l} x_1' &= ax_1 + bx_2 \\ x_2' &= cx_1 + dx_2 \end{array} \Leftrightarrow \begin{bmatrix} x_1' \\ x_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \Leftrightarrow \quad \mathbf{x}' = A\mathbf{x} \end{array}$$

Then we could solve the system in three ways:

- Convert the system to 2d order DE of the form ay'' + by' + cy = 0, and solve.
- Could try to write the system in implicit form:

$$\frac{dx_2}{dx_1} = \frac{dx_2/dt}{dx_1/dt} = \frac{cx_1 + dx_2}{ax_1 + bx_2}$$

Then we could try to use a first order method.

• Use the eigenvalues and eigenvectors from the matrix A. This is summarized below for 2×2 matrices.

Eigenvalues and Eigenvectors

• Definition: Given an $n \times n$ matrix A, if there is a constant λ and a non-zero vector **v** so that

$$A\mathbf{v} = \lambda \mathbf{v}$$

then λ is an eigenvalue, and **v** is an associated eigenvector for matrix A. Note that an eigenvector is not uniquely determined; we usually choose the simplest vector (integer valued if possible).

• If we try to solve our equation:

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$$
 or $(A - \lambda I)\mathbf{v} = \mathbf{0}$ (1)

This system has a non-trivial (non-zero) solution for v_1, v_2 only if the determinant is zero (so that $A - \lambda I$ is not invertible):

$$|A - \lambda I| = 0$$

And this is the **characteristic equation**, and simplifying it will give you an n^{th} degree polynomial in λ , which we solve for the eigenvalues.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then the characteristic equation becomes:
 $\lambda^2 - (a+d)\lambda + (ad-bc) = 0 \quad \Leftrightarrow \lambda^2 - \operatorname{Tr}(A)\lambda + \det(A) = 0$

where Tr(A) is the trace of A (which we defined as a + d). For each λ , we must go back and solve Equation (1).

• Given a λ and \mathbf{v} , the generalized eigenvector \mathbf{w} is computed as the solution to

$$(A - \lambda I)\mathbf{w} = \mathbf{v}$$

and in the 2×2 case, it is used when λ has algebraic multiplicity 2, but geometric multiplicity 1 (a double root with only one eigenvector).

Summary

To solve $\mathbf{x}' = A\mathbf{x}$, find the trace, determinant and discriminant for the matrix A. The eigenvalues are found by solving the characteristic equation:

$$\lambda^{2} - \operatorname{Tr}(A)\lambda + \det(A) = 0$$
 $\lambda = \frac{\operatorname{Tr}(A) \pm \sqrt{\Delta}}{2}$

The solution is one of three cases, depending on Δ :

• Real λ_1, λ_2 give two eigenvectors, $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}(t) = C_1 \mathrm{e}^{\lambda_1 t} \mathbf{v}_1 + C_2 \mathrm{e}^{\lambda_2 t} \mathbf{v}_2$$

• Complex $\lambda = a + ib$, **v** (we only need one):

$$\mathbf{x}(t) = C_1 \operatorname{Real}\left(e^{\lambda t} \mathbf{v}\right) + C_2 \operatorname{Imag}\left(e^{\lambda t} \mathbf{v}\right)$$

• One eigenvalue, one eigenvector \mathbf{v} . Compute the generalized eigenvector \mathbf{w} , $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then

$$\mathbf{x}(t) = e^{\lambda t} \left(C_1 \mathbf{v} + C_2 \left(t \mathbf{v} + \mathbf{w} \right) \right)$$

You might find this helpful- Below there is a chart comparing the solutions from Chapter 3 to the solutions in Chapter 7:

	Chapter 3	Chapter 7
Form:	ay'' + by' + cy = 0	$\mathbf{x}' = A\mathbf{x}$
Ansatz:	$y = e^{rt}$	$\mathbf{x} = \mathrm{e}^{\lambda t} \mathbf{v}$
Char Eqn:	$ar^2 + br + c = 0$	$\lambda^2 - \operatorname{Tr}(A)\lambda + \det(A) = 0$
Real Solns	$y = C_1 \mathrm{e}^{r_1 t} + C_2 \mathrm{e}^{r_2 t}$	$\mathbf{x}(t) = C_1 \mathrm{e}^{\lambda_1 t} \mathbf{v}_1 + C_2 \mathrm{e}^{\lambda_2 t} \mathbf{v}_2$
Complex	$y = C_1 \operatorname{Re}(e^{rt}) + C_2 \operatorname{Im}(e^{rt})$	$\mathbf{x}(t) = C_1 \operatorname{Re}\left(e^{\lambda t} \mathbf{v}\right) + C_2 \operatorname{Im}\left(e^{\lambda t} \mathbf{v}\right)$
Repeated Root	$y = e^{rt}(C_1 + C_2 t)$	$\mathbf{x}(t) = e^{\lambda t} \left(C_1 \mathbf{v} + C_2 \left(t \mathbf{v} + \mathbf{w} \right) \right)$

Exercise Set 3

1. Verify that the following function solves the given system of DEs:

$$\mathbf{x}(t) = C_1 \mathrm{e}^{-t} \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 \mathrm{e}^{2t} \begin{bmatrix} 2\\1 \end{bmatrix} \qquad \mathbf{x}' = \begin{bmatrix} 3 & -2\\2 & -2 \end{bmatrix} \mathbf{x}$$

2. For each matrix, find the eigenvalues and eigenvectors (these are selected from 16-23, p. 384 in the textbook). Note that they could be complex, and the matrix A may have complex numbers. Try the last one to see if you can do it!

(a)
$$A = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$
(c) $A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$
(d) $A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$
(e) $A = \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$
(f) $A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{bmatrix}$

- 3. For each given λ and \mathbf{v} , find an expression for $\operatorname{Re}(e^{\lambda t}\mathbf{v})$ and $\operatorname{Im}(e^{\lambda t}\mathbf{v})$:
 - (a) $\lambda = 3i, \mathbf{v} = [1 i, 2i]^T$ (b) $\lambda = 1 + i, \mathbf{v} = [i, 2]^T$ (c) $\lambda = 2 - i, \mathbf{v} = [1, 1 + 2i]^T$ (d) $\lambda = i, \mathbf{v} = [2 + 3i, 1 + i]^T$
- 4. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}' = A\mathbf{x}$. Furthermore, classify the origin as a sink, source, saddle, or none of the above.

(a)
$$\lambda = -2, 3$$
 $\mathbf{v}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$
(b) $\lambda = -2, -2$ $\mathbf{v} = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3\\ 1 \end{bmatrix}$
(c) $\lambda = 2, -3$ $\mathbf{v}_1 = \begin{bmatrix} -1\\ 2 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$

5. Give the general solution to each system $\mathbf{x}' = A\mathbf{x}$ using eigenvalues and eigenvectors, and sketch a phase plane (solutions in the x_1, x_2 plane). Identify the origin as a *sink*, *source* or *saddle*:

(a)
$$A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} -6 & 10 \\ -2 & 3 \end{bmatrix}$
(d) $A = \begin{bmatrix} 8 & 6 \\ -15 & -11 \end{bmatrix}$

6. (Extra Practice) For each system below, find y as a function of x by first writing the differential equation as dy/dx.

(a)
$$\begin{array}{l} x' &= -2x \\ y' &= y \end{array}$$
 (c) $\begin{array}{l} x' &= -(2x+3) \\ y' &= 2y-2 \end{array}$
(b) $\begin{array}{l} x' &= y + x^3y \\ y' &= x^2 \end{array}$ (d) $\begin{array}{l} x' &= -2y \\ y' &= 2x \end{array}$