Exercise Set 3

This includes the relevent exercises handed out earlier with some deletions and some additions. For the direction field/solution curve plots, use the website linked from our class site.

1. Verify that the following function solves the given system of DEs:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \mathbf{x}
$$

2. For each matrix, find the eigenvalues and eigenvectors. Plot the direction field with some solution curves (for the two dimensional systems), then give the solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ in each case.
(a) $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$
(c) $A=\left[\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right]$
(e) $A=\left[\begin{array}{rrr}3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$
3. For each given λ and \mathbf{v}, find an expression for $\operatorname{Re}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$ and $\operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$:
(a) $\lambda=3 i, \mathbf{v}=[1-i, 2 i]^{T}$
(c) $\lambda=2-i, \mathbf{v}=[1,1+2 i]^{T}$
(b) $\lambda=1+i, \mathbf{v}=[i, 2]^{T}$
(d) $\lambda=i, \mathbf{v}=[2+3 i, 1+i]^{T}$
4. (Extra Practice) For each system below, find y as a function of x by first writing the differential equation as $d y / d x$.
(a) $\begin{aligned} & x^{\prime}=-2 x \\ & y^{\prime}=y\end{aligned}$
(c) $\quad \begin{aligned} x^{\prime} & =-(2 x+3) \\ y^{\prime} & =2 y-2\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=y+x^{3} y \\ & y^{\prime}=x^{2}\end{aligned}$
(d) $\begin{aligned} x^{\prime} & =-2 y \\ y^{\prime} & =2 x\end{aligned}$
5. Use the Poincaré diagram to determine how changing a in the system below will change the equilibrium. Each system is $\mathbf{x}^{\prime}=A \mathbf{x}$, where A is given below.
(a) $A=\left[\begin{array}{rr}a & -1 \\ 2 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}a & 1 \\ a & a\end{array}\right]$
6. Lab: Bifurcations in Linear Systems.

Discussion: A "bifurcation" is the change in the number or type of equilibrium solutions we have. For example, if the matrix A is invertible, we know that $\mathbf{x}^{\prime}=A \mathbf{x}$ has only one equilibrium- At the origin. If there is a change so that the matrix becomes noninvertible (or singular), then there are an infinite number of equilbria.

Suppose we consider the linear system:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=-x-y
\end{aligned}
$$

where a, b can take on any real number. Write a report addressing the following:
For each value of a, b, classify the linear system as a source, sink, center, spiral sink (or source), or degenerate sink (or source). Draw a picture of the (a, b) plane and indicate the values of a, b for which the system is of each type. Be sure to describe all of the computations involved in creating this picture.

The Poincaré Diagram

The Poincaré Diagram is a nice way of classifying the equilibrium for all linear two dimensional systems. Here is a quick introduction to it:

Given $\mathbf{x}^{\prime}=A \mathbf{x}$, the characteristic equation is given by

$$
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0 \Rightarrow \lambda=\frac{\operatorname{Tr}(A) \pm \sqrt{\Delta}}{2}=\frac{\operatorname{Tr}(A) \pm \sqrt{\operatorname{Tr}(A)^{2}-4 \operatorname{det}(A)}}{2}
$$

The type of eigenvalues we get depends on the discriminant. The key value is where the discriminant is zero:

$$
\Delta=\operatorname{Tr}(A)^{2}-4 \operatorname{det}(A)=0
$$

Now, thinking of the trace being on the "x-axis" and the determinant being on the " y -axis", we see the parabola:

$$
x^{2}-4 y=0
$$

This divides the trace-determinant plane into different regions, and we can classify the equilibrium in each region. Here is an example exercise using this:

Example:

Let $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{rr}a & a^{2}+a \\ 1 & a\end{array}\right]$. Describle how changing the value of a changes the type/number of equilibrium solutions.

SOLUTION: For the Poincaré diagram, we need the trace, determinant and discriminant:

$$
\operatorname{Tr}(A)=2 a \quad \operatorname{det} A=a^{2}-\left(a^{2}+a\right)=-a \quad \Delta=(2 a)^{2}-4(-a)=4 a^{2}+4 a=4 a(a+1)
$$

To see where we are in the diagram, we need to know the signs of these three values, so we can perform a sign chart analysis. We break the number line up where each quantity is zeroIn this case, $a=0$ or $a=-1$:

$\operatorname{Tr}(A)=2 a$	-	-	-	0	+
$\operatorname{det}(A)=-a$	+	+	+	0	-
$\Delta=4 a(a+1)$	+	0	-	0	+
	$a<-1$	$a=-1$	$-1<a<0$	$a=0$	$a>0$
		Degen	Spiral	Unif	
	Sink	Sink	Sink	Motion	Saddle

