
Review Solutions, Mathematical Modeling

1. Let x′ =

[
1 1
6 −4

]
x. Convert this system to an equivalent second order linear homo-

geneous differential equation, then solve that.

SOLUTION: If we use x1, x2 for the variables, we can use the first equation to solve
for x2 in terms of x1, then substitute that into the second equation:

x′1 = x1 + x2
x′2 = 6x1 − 4x2

⇒ x2 = x′1 − x1 ⇒ (x′1 − x1)′ = 6x1 − 4(x′1 − x1)

Simplifying this to get a second order equation with x1:

x′′1 − x′1 = 6x1 − 4x′1 + 4x1 ⇒ x′′ + 3x′1 − 10x1 = 0

which gives us the characteristic equation: r2 + 3r − 10 = 0, or (r − 2)(r + 5) = 0.
Therefore, the full solution for x1 is given by:

C1e
2t + C2e

−5t

EXTRA NOTE: We can also solve this directly using eigenvalues and eigenvectors.
Given the matrix A, the characteristic equation is the same:

λ2 + 3λ− 1 = 0 ⇒ λ = 2,−5

If λ = 2, the eigenvector is found the usual way:

(A− λI)v = 0 ⇒ −v1 + v2 = 0 ⇒ v =

[
1
1

]

Similarly, using λ = −5, the eigenvector is found by solving

−4v1 + v2 = 0 ⇒ v =

[
1
4

]

The full solution to the system is therefore:

x(t) = C1e
2t

[
1
1

]
+ C2e

−5t
[

1
4

]
=

[
C1e

2t + C2e
−5t

C1e
2t + 4C2e

−5t

]

Notice that the solution we got in the original question is the first line.

2. Let y′′− 6y′ + 9y = 0 with y(0) = 1, y′(0) = 2. Convert this into an equivalent system
of first order differential equations, then solve it using eigenvectors and eigenvalues.

SOLUTION: Let x1 = y and x2 = y′. Then the system of DEs we get:

x′1 = x2
x′2 = −9x1 + 6x2

⇒ x′ =

[
0 1
−9 6

]
x
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With trace 6 and det 9, the characteristic equation is λ2 − 6λ + 9 = 0 (which is what
we expected). Solving for λ, we get a double root of λ = 3.

For the eigenvector: [
−3 1
−9 3

]
v = ~0 ⇒ v =

[
1
3

]
Since we have a double eigenvalue and only one eigenvector, we get the generalized
eigenvector w that solves: (A− λI)w = v:

−3w1 + w2 = 1
−9w1 + 3w2 = 3

Choose any vector that satisfies these equations. For example, w1 = 0 and w2 = 1.

Now the general solution is given by:

x(t) = e3t
(
C1

[
1
3

]
+ C2

(
t

[
1
3

]
+

[
0
1

]))

With the initial condition, you should find that C1 = 2/3 and C2 = 1/3.

EXTRA NOTE: If we had solved this directly, we would have gotten

y(t) = e3t(C1 + C2t)

which is what we get in the system as well. Notice that the second coordinate of the
solution to the system is y′:

y′ = 3C1e
3t + 3C2te

3t + C2e
3t = e3t(3C1 + 3tC2 + C2)

3. Given each matrix A below, give the general solution to x′ = Ax, and classify the
equilibrium as to its stability (you may use the Poincaré Diagram, if needed).

(a)

[
0 1
−2 −3

]
SOLUTION:

x(t) = C1e
−t
[

1
−1

]
+ C2e

−2t
[
−1

2

]

(b)

[
−4 −17

2 2

]
SOLUTIONS: The eigenvalues are λ = −1± 5i. Using λ = −1 + 5i, we find the
corresponding eigenvector:[

−4− (−1 + 5i) −17
2 2− (−1 + 5i)

]
v = 0
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Using the second equation, we get v = [−3 + 5i, 2]T . To find the solution, we
compute eλtv:

e(−1+5i)t

[
−3 + 5i

2

]
= e−t

[
(−3 cos(5t)− 5 sin(5t)) + i(−3 sin(5t) + 5 cos(5t))

2 cos(5t) + 2i sin(5t)

]

Therefore, the full solution is:

x(t) = e−t
(
C1

[
−3 cos(5t)− 5 sin(5t)

2 cos(5t)

]
+ C2

[
−3 sin(5t) + 5 cos(5t)

2 sin(5t)

])

(You might note that the origin here is a SPIRAL SINK)

(c)

[
3 −4
1 −1

]
SOLUTION: You should find a double eigenvalue, λ = 1, 1 with eigenvector v =
[2, 1]T . We then need a generalized eigenvector w that satisfies the equation
(A− λI)w = v: [

2 −4
1 −2

] [
w1

w2

]
=

[
2
1

]
Choose any w1, w2 that satisfies this relationship. For example, w1 = 1 and w2 = 0
is convenient. Now we write the solution:

x(t) = et
(
C1

[
2
1

]
+ C2

(
t

[
2
1

]
+

[
1
0

]))

4. Suppose we have brine pouring into tank A at a rate of 2 gallons per minute, and salt
is in the brine at a concentration of 1/2 pound per gallon. Brine is being pumped into
tank A from tank B (well mixed) at a rate of 1 gallon per minute. Brine is pumped
out of tank A at a rate of 3 gallons per minute to tank B, and brine is poured into
tank B from an external source at a rate of 2 gallons per minute, and 1/3 pound of
salt per gallon. Initially, both tanks have 100 gallons of clear water.

Write the system of differential equations that model the amount of salt in the tanks
at time t.

TYPO, becoming part of the problem: Before solving, determine at what rate
the well mixed solution needs to be pumped out of Tank B to keep the tanks at 100
gallons of fluid for all time.

SOLUTION: We need to pump out 4 gallons per minute.

Now, we can write the differential equations. Recall that the model is “Rate in-Rate
out”. Let A(t), B(t) be the amount (in pounds) of salt in tank A,B respectively, at
time t in minutes. Then:

dA

dt
=
(

2 · 1

2
+ 1 · B

100

)
− 3

A

100
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dB

dt
=
(

2 · 1

3
+ 3

A

100

)
− 5

B

100

You could stop there, but let’s put it in matrix form so it looks familiar:[
A
B

]′
=

1

100

[
−3 1

3 −5

] [
A
B

]
+

[
1

2/3

]

5. Consider the system x′ = Ax + b given below:[
x′1
x′2

]
=

[
1 3
4 2

] [
x1
x2

]
+

[
10
10

]

(a) Find the equilibrium solution, xE.

SOLUTION: The equilibrium solution for a differential equation is where the
derivative is zero.[

0
0

]
=

[
1 3
4 2

] [
x1
x2

]
+

[
10
10

]
x =

1

2− 12

[
2 −3
−4 1

] [
−10
−10

]
=

[
−1
−3

]

(b) Show that, if u = x− xE, then the differential equation for u is: u′ = Au.

SOLUTION: We can show it in general-

u′ = x′−xE = Ax+b−xE+AxE−AxE = A(x−xE)+b+A(−A−1b) = A(x−xE)

Therefore, u′ = Au.

(c) Solve the differential equation by first solving the DE for u.

TYPO: The eigenvalues/eigenvectors for A are not simple expressions,
so write your answer symbolically, assuming two distinct eigenvalues.

SOLUTION:

u(t) = C1e
λ1tv1 + C2e

λ2tv2 ⇒ x(t) = C1e
λ1tv1 + C2e

λ2tv2 +

[
−1
−3

]

6. Use the Poincaré Diagram to determine how the origin changes stability by changing
α if

x′ =

[
α + 1 α

2 1

]
x

SOLUTION: To use the Poincaré Diagram, we look at expressions for the trace, deter-
minant and discriminant and determine where each is positive/negative/zero. In this
situation,

Tr(A) = α + 2 det(A) = 1− α ∆ = α2 + 8α
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Performing a sign chart analysis (at the bottom, divide the α number line by where
each quantity is zero)

α + 2 − − + + +
1− α + + + + −
α(α + 8) + − − + +

α < −8 −8 < α < −2 −2 < α < 0 0 ≤ α < 1 α > 1

We can now read off the results, from left to right:

• If α < −8, we have a sink.

• If α = −8, we have a degenerate sink.

• If −8 < α < −2, we have a spiral sink.

• If α = −2, we have a center.

• If −2 < α < 0, we have a spiral source.

• If α = 0, we have a degenerate source.

• If 0 < α < 1, we have a source.

• If α = 1, we have a line of unstable fixed points.

• If α > 1, we have a saddle.

7. Let F be given below, and linearize it at the given value.

(a) F(t) =

 t2 + 3t+ 2√
t+ 1 + 1

sin(t)

 at t = 0

SOLUTION: The “derivative” in this case is computed element-wise, so that:

F(0) =

 2
2
0

 F′(0) =

 3
1/2
1

 ⇒ L(t) = F(0)+F′(0)t =

 2
2
0

+t

 3
1/2
1


(b) f(x, y, z) = x2 + 3x+ 2y + 4z − 2 at (x, y, z) = (1,−1, 1)

In this case, the linearization is given by:

L(x, y, z) = f(1,−1, 1)+fx(1,−1, 1)(x−1)+fy(1,−1, 1)(y+1)+fz(1,−1, 1)(z−1)

Substituting everything in, we get:

L(x, y, z) = 4 + 5(x− 1) + 2(y + 1) + 4(z − 1)
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(c) F(x, y) =

[
x2 + 3xy − y + 1
y2 + 2xy + x2 − 1

]
at (x, y) = (1, 0)

In this case, the linearization is given by the following, if we think of f(x, y) =
x2 + 3xy − y + 1 and g(x, y) = y2 + 2xy + x2 − 1:

L(x, y) = F(1, 0) +

[
fx(1, 0) fy(1, 0)
gx(1, 0) gy(1, 0)

] [
x− 1
y

]
=

[
2
0

]
+

[
2 2
2 2

] [
x− 1
y

]

8. For each nonlinear system below, perform a local linear analysis about all equilibria.

(a)
dx/dt = x− xy
dy/dt = y + 2xy

We should find two equilbria. The origin is a source and the point (−1/2, 1) is a
saddle.

(b)
dx/dt = 1 + 2y
dy/dt = 1− 3x2

We should find two equilibria: (−
√

3,−1/2) and (
√

3,−1/2). The first equilibrium
is saddle, the second is a center.

Side Remark: In this instance, the full nonlinear system actually has a spiral
sink at the second equilibrium, but we would have failed to see it because of the
linearization, as we discussed in class.

9. For each of the systems in question 8, solve them by first computing dy/dx.

(a) In this case, we have a separable differential equation:

dy

dx
=
y(1 + 2x)

x(1− y)
⇒

∫ 1− y
y

dy =
∫ 1 + 2x

x
dx ⇒ ln |y|−y = ln |x|+2x+C

(b) In this case, we also have a separable differential equation:

dy

dx
=

1− 3x2

1 + 2y
⇒

∫
1 + 2y dy =

∫
1− 3x2 dx ⇒ y +

1

2
y2 = x− x3 + C

10. For 8(a) above, if x and y were two populations, what kinds of assumptions are being
made to result in these differential equations?

SOLUTION: In the absence of the other, both populations experience exponential
growth. In the presence of interactions between them, x suffers and y benefits (perhaps
y is eating x!).

11. Given x′ = f(x, y) and y′ = g(x, y), then a nullcline is a curve where f or g is 0. Note
that an equilibrium is where the nullclines intersect.

6



If x′ = −4x + y + x2 and y′ = 1 − y, then graph the nullclines, taking note of the
equilbrium solutions. Is there an area in your drawing where x′ < 0 and y′ < 0? Make
note of it.

SOLUTION: See the figure below. The region of interest is above the line and inside
the parabola.

12. Is the following system an example of predator-prey or competing species? In either
case, perform a local linear analysis:

x′ = x(1− 0.5y)
y′ = y(−0.75 + 0.25x)

SOLUTION: This is an example of predator-prey (x is the prey). There are two
equilibria: (0, 0) and (3, 2). When we linearize about the origin, we get a saddle, and
when we linearize about (3, 2), we get a center (which in fact does not persist in the
full nonlinear case).

13. Solve:

(a) xn+1 = xn + 1

SOLUTION: You might try this one just from first principles:

x0, x1 = x0 + 1, x2 = x0 + 2, · · ·

From which it is apparent that xn = x0 + n, given any initial x0.

(b) xn+1 = 5xn + n2
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SOLUTION: The form of our solution is c ·5n+p(n), where p(n) is a full parabola:
An2 + Bn + c. We substitute p(n) into the difference equation to get equations
for A,B,C:

A(n2 + 2n+ 1) +B(n+ 1) + C = 5An2 + 5Bn+ 5C + n2

This must hold for each n, so therefore we get three equations (one for n2 terms,
one for n terms, one for the constants):

A = 5A+ 1 ⇒ A = −1

4

2A+B = 5B ⇒ 4B = 2A ⇒ B =
1

2
A = −1

8

A+B + C = 5C ⇒ C =
1

4

(
−1

4
− 1

8

)
= − 3

32

Therefore, the full solution is:

xn = c · 5n − 1

4
n2 − 1

8
n− 3

32

(c) xn+1 = 1
2
xn + 3n

SOLUTION: Try going at this from first principles.

x1 =
1

2
x0 + 1

x2 =
1

2
x1 + 31 =

1

22
x0 +

1

2
+ 3

x3 =
1

23
x0 +

1

22
+

3

2
+ 32, etc.

Did you get the following pattern?

xn =
1

2n
x0 +

1

2n−1
+

3

2n−2
+ · · ·+ 3n−2

2
+ 3n

If you got this far, great! It is possible to show that the solution can also be
written as:

xn = c ·
(

1

2

)n
+

2

5
· 3n

where c = x0 − 2/5 if we use some geometric sum formulas. It’s fine if you got
the other version, though.
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14. Assume the temperature of a roast in the oven increases at a rate proportional to the
difference between the oven temperature (set to 400) and the roast temperature. If
the roast enters the oven at 50 degrees, and is measured one hour later to be 90, when
will the roast reach the FDA safe temperature of 160? (Hint: Write down, then solve
the difference equation).

SOLUTION: From what is given, we have the following, where Rn is the temperature
of the roast at hour n, and k is our constant of proportionality:

Rn+1 −Rn = k(400−Rn)

From the measurements we’re given, we can solve for k (R0 = 50 and R1 = 90):

90− 50 = k(400− 50) ⇒ k =
4

35

Our difference equation is now:

Rn+1 = (1− k)Rn + 400k =
31

35
Rn +

320

7

Now, given that Rn+1 = aRn + b, we can solve this directly. Recall that, if we define
RE as the equilibrium solution, then:

Rn = an(R0 −RE) +RE

If we compute the equilibrium, we get RE = 400 (which makes sense). Now:

Rn = (−350) ·
(

31

35

)n
+ 400

Finally, setting Rn = 160, we see that n ≈ 3.1 hours.

NOTE: I won’t have you do a lot of numerical work like this without a calculator
(and you won’t have a calculator). However, you should have been able to set up the
difference equation and solve for the growth constant k.

15. Convert the following system of difference equations to a second order difference equa-
tion, and solve it if x0 = y0 = 1.

xn+1 = 2yn
yn+1 = 3xn

SOLUTION: Sorry about the slightly messy numbers. Here, we get xn+2 = 6xn, so
with the ansatz that xn = λn, the characteristic equation is:

λ2 − 6 = 0 ⇒ λ = ±
√

6
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so the general solution is given by

xn = C1(
√

6)n + C2(−
√

6)n

And, given that x0 = 1 and x1 = 2y0 = 2, then we get that

C1,2 =
3±
√

6

6

16. Solve the second order difference equation with x0 = 1, x1 = −1.

(a) xn+2 − xn = 0

SOLUTION: The characteristic equation: λ2 − 1 = 0, so λ = ±1 and the general
solution is:

xn = C1(1)n + C2(−1)n

We get C1 = 0 and C2 = 1, so the solution is: xn = (−1)n.

(b) xn+2 + xn = 0

SOLUTION: In this case, we get complex roots to the characteristic equation.
Writing λ = reiθ, then the general solution is

xn = rn(C1 cos(nθ) + C2 sin(nθ))

In this case, λ = ±i, so that r = 1 and θ = π
2
:

xn = C1 cos
(
nπ

2

)
+ C2 sin

(
nπ

2

)
Solving for C1, C2, we should get C1 = 1 and C2 = −1.

(c) xn+2 + 3xn+1 + xn = 0

SOLUTION: TYPO: As is, the solution is a bit messy. Change the 3 to a
2 so that the characteristic equation becomes λ2 + 2λ+ 1 = (λ+ 1)2 = 0

Now we have a repeated root of λ = −1, and the general solution is:

xn = (−1)n(C1 + nC2)

Solving for the constants, C1 = 1 and C2 = 0.

(d) xn+2 = xn+1 + xn (Do you recognize this famous difference equation? Typically
we set x0 = 1, x1 = 1 in this example, so you can solve it that way.)

SOLUTION: OK, this one is messy, but it’s supposed to be that way! The char-
acteristic equation gives us

λ1,2 =
1±
√

5

2

so that
xn = C1λ

n
1 + C2λ

n
2
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17. Consider the difference equation:

xn+2 + αxn+1 + βxn = 0

where we assume α2 = 4β = 0. Show that xn = n(−α/2)n is a solution.

SOLUTION: Substitute the expression in, and show that you have a true statement.
Substituting, we get:

(n+ 2)
(
−α

2

)n+2

+ α(n+ 1)
(
−α

2

)n+1

+ βn
(
−α

2

)n
= 0

Factor out (−α/2)n (and divide it out), then multiply by 4:

(n+ 2)
(
−α

2

)2

+ α(n+ 1)
(
−α

2

)
+ βn = 0

α2(n+ 2)− 2α2(n+ 1) + 4βn = 0

We need to show that this is true for all n, which means the coefficient for n needs to
sum to zero, as does the constant term:

n terms α2 − 2α2 + 4β = 0
constants 2α2 − 2α2 = 0

For the first equation, we have α2 = 4β, so that is true. The second equation is always
true as well. Therefore, the expression is a solution to the difference equation.

18. Convert the following equations to equivalent systems of first order:

(a) xn+2 + xn+1 − xn = 0

SOLUTION: If we let un = xn and vn = xn+1, then the system is

un+1 = vn
vn+1 = un − vn

(b) xn+2 + 3xn+1 + xn = 0

SOLUTION: If we let un = xn and vn = xn+1, then the system is

un+1 = vn
vn+1 = −un − 3vn

19. Convert the following systems of first order into an equivalent difference equation of
second order.

(a)
an+1 = an + bn
bn+1 = 3an + bn

SOLUTION: Let bn = an+1 − an from the first equation, then subsitute into the
second:

an+2 − an+1 = 3an + an+1 − an ⇒ an+2 − 2an+1 − 2an = 0
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(b)
an+1 = 2an + bn
bn+1 = an + 2bn

SOLUTION: Let bn = an+1 − 2an from the first equation, then subsitute into the
second:

an+2 − 2an+1 = an + 2an+1 − 2an ⇒ an+2 − 4an+1 + an = 0

20. Is it always possible to convert a system of two linear equations (as in the last problem)
to a single second order difference equation? Explain.

SOLUTION: It is possible if you can write one of the variables in terms of the other.
That is not possible in a system like:

x′ = ax, y′ = by
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