
Neural Nets

To give you an idea of how new this material is, let’s do a little history lesson.
The origins of neural nets are typically dated back to the early 1940’s and
work by two physiologists, McCulloch and Pitts. Hebb’s work came later,
when he formulated his rule for learning. In the 1950’s came the perceptron.
The perceptron is what we called a linear neural network- it became clear that
the perceptron could only classify certain types of data (what we now call
linearly separable data). This shortcoming led to a stop in neural net research
for many years- It was not until the 1980’s that neural net research really took
off from a coming together of many disparate strands of research- There was
a group in Finland led by T. Kohonen that was working with self-organizing
maps (SOM); there was the work from the 70s with Stephen Grossberg, and
finally several researchers were discovering methods for training new networks
that could be put in parallel (back-propagation).

It was in the 80’s and 90’s that researchers were able to prove that a
neural network was a universal function approximator- That is, for any
function with certain nice properties, we are able to find a neural network that
will approximate that function with arbitrarily small error. It is interesting
to note that the use of a neural network could be used to solve Hilbert’s 13th
Problem.

“Every continuous function of two or more real variables can be written
as the superposition of continuous functions of one real variable along with
addition.”

Coming to present day, research is aimed at something called deep neu-
ral nets that perform automatic feature extraction and we’ll discuss
those once we’ve looked at the typical neural net.

The term “neural network” has come to be an umbrella term covering
a broad range of different function approximation or pattern classification
methods. The classic type of neural network can be defined simply as a
connected graph with weighted edges and computational nodes- We’ve seen
a linear neural network (using Widrow-Hoff training rule). We now turn to
the workhorse of the neural network community: The feed forward neural
network.

General Model Building

As with our other types of neural networks, we assume that we have p data
pairs, (x(1), t(1)), (x(2), t(2)), · · · , (x(p), t(p)) (the letter t is for target), and we
are looking to build a function F so that ideally,

F (x(i)) = t(i) for i = 1, 2, . . . , p

However, we will typically allow for error, and we typically model the error
εi using a normal distribution. Let y(i) denote the output of the model so

1



that now
y(i) = F (x(i)) and t(i) = y(i) + ~εi

If we assume that y(i) depends on parameters (weights and biases, like the
RBF), then we might state it as an optimization problem- Find the function
F that minimizes the error function:

E =
1

2

p∑
i=1

‖t(i) − y(i)‖2

so that E is a function of the parameters in F , and we would go about
determining the values of the parameters that minimize the error, and that
will include differentiating E.

Looking at the Derivative

If we focus on only one term of the sum, then:

‖t− y‖2 = (t1 − y1)2 + (t2 − y2)2 + · · ·+ (tm − ym)2

Therefore, if y depends on some parameter α, we can differentiate both sides
by α to get:

∂

∂α
(‖t− y‖2) = −2(t1 − y1)

∂y1
∂α
− 2(t2 − y2)

∂y2
∂α
− · · · − 2(tm − ym)

∂ym
∂α

Another way to write this may be:

∂

∂α
(‖t− y‖2) = −2(t− y) · ∂y

∂α

Notice we have a new definition there about differentiating a vector. Now
we’ll be more specific. Earlier in this class we looked at a linear neural net,
y(i) = Wx(i) + b, so let’s look at this derivative in this particular case. It is
convenient to write this in terms of the rows of W using Matlab notation:

y = Wx + b =


W (1, :)x + b1
W (2, :)x + b2

...
W (m, :)x + bm

 ⇒ ∂y

∂Wij

=



0
...
0
xj
0
...
0


where xj is in the ith coordinate position. Altogether, for the linear network,
we see that

∂

∂Wij

(‖t− y‖2) = −2(ti − yi)xj

which is a scalar multiple of our Widrow-Hoff rule.

2



The Feed-Forward Neural Network

As in the linear network, we will assume that along the dendrites, our signals
can be scaled or re-polarized. If we use k neurons, then this is a linear
mapping from IRn → IRk, and W1 is a k × n matrix. A vector b1 represents
the “standing voltage” of the neuron, and can be added as a bias term:

x→ W1x + b1

Rather than stopping here, we will now call this the prestate (denoted by P1)
of the layer of neurons. Next, a nonlinear transfer function is applied, σ(r).
This is typically called a sigmoidal function because of its shape. The result
is a vector in IRk known as the state (denoted by S1) of the layer of neurons.
Adding that to our diagram, we have:

x→ P1 = W1x + b1 → S1 = σ(P1)

Finally, the signal can be recombined in a linear way to produce an output
vector y ∈ IRm using W2 that is m × k and another bias vector, b2 ∈ IRm.
Starting from the input layer, here are the operations performed by our
network:

P0 = x → S0 = P0 Input Layer
↓

P1 = W1S0 + b1 → S1 = σ(P1) Hidden Layer
↓

P2 = W2S1 + b2 → S2 = P2 Output Layer

Putting it all together, we could write the function F explicitly:

F (xi) = W2 (σ (W1xi + b1)) + b2

so that, with σ defined, F becomes a function of the weights W1,W2, and
the biases b1,b2.

Defining the Network Architecture

We have constructed what many people call a two layer network (although I
typically say it is three layers- Some people don’t count the input layer as a
real layer):

• The first “layer” is called the input layer. If xi ∈ IRn, then the input
layer has n “nodes”.

• The next layer is called the hidden layer, and it consists of k nodes
(where k is the number of neurons we’re using). The mapping from
the input layer to the hidden layer is performed by our first affine map,
then σ is applied to that vector.

3



• The last layer is called the output layer, and if y ∈ IRm, then the output
layer has m nodes.

We did not need to stop with only a single hidden layer- Some researchers
like to use multiple hidden layers as a default neural network. In that case,
the mapping (in stages) would look like:

P0 = x → S0 = σ(P0) Input Layer 0
↓

P1 = W1S0 + b1 → S1 = σ(P1) Layer 1
↓

P2 = W2S1 + b2 → S2 = σ(P2) Layer 2
↓

P3 = W3S2 + b3 → S3 = σ(P3) Layer 3
↓
...

One can imagine that many layers are possible, but it has been shown that,
at least theoretically, one needs to have only one hidden layer to perform the
function approximation to arbitrarily small error. In practice, the computa-
tions involved are often faster with multiple layers (each with a small number
of nodes) than a very large single hidden layer.

Definition: The architecture of the neural network is typically defined
by stating the number of neurons in each layer. For example, a 2 − 3 − 4
network has one hidden network of three neurons, and maps IR2 to IR4.

The parameters of a neural network

To define a three layer neural network in the form n − k − m, we should
first set up the transfer function σ. Although we could define a different σ
for every neuron, we typically will use the same transfer function for all the
neurons in a single layer.

Once that is done, then we have to find matrices W1,W2 (and more,
if we use more layers) and the bias vectors b1,b2. Altogether, this makes
(nk + k) + (mk + m) parameters. Ideally, we would have much more data
than that in order to get good estimates. In any case, we want to minimize
the usual sum of squared error:

E(W1,W2,b1,b2) =
1

2

p∑
i=1

‖t(i) − y(i)‖2

where y(i) is the output of the neural net. In the case of a single hidden
layer, we have:

y(i) = W2

(
σ
(
W1x

(i) + b1

))
+ b2

4



The transfer function

In a neuron, the incoming signals to the cell body must usually surpass some
lowest trigger value before the signal is sent out. A graph of this would be a
step function, where the step is at trigger.

This is not a good function using notions from Calculus because the
voltage function is not continuous and not differentiable at the trigger . We
replace the step function by any function that is:

• Increasing.

• Differentiable

• Has finite horizontal asymptotes at ±∞.

Such a function generally looks like an extended “S”- We call it a sigmoidal
function.

There are many ways we could define a sigmoidal, but here are some
standard choices (going from most to least used):

•
σ(r) =

1

1 + e−r

Matlab calls this the “logsig” function.

•
σ(r) = arctan(r)

Matlab does not use this one.

•
σ(r) = tanh(r) =

e2r − 1

e2r + 1

Matlab calls this one “tansig”.

Exercises

1. Compute the limits as x→ ±∞ for the two types of sigmoidal functions
that Matlab uses. Show that they are also monotonically increasing
functions.

2. Let σ(x) = 1
1+e−βx

. Show that

σ′(x) = βσ(x)(1− σ(x))

3. If x ∈ IRn and our targets t ∈ IRm, and we use k nodes in the hidden
layer, how many unknown parameters do we have to find?

As you are constructing your network, keep this number in mind. In
particular, you should have at least several data points for each un-
known parameter that you are looking for.

5



4. We have to be somewhat careful when our data is badly scaled. For
example, complete this table of values:

x 0 0.5 1 10 40 100
tanh(x)

logsig(x)

What do you see as x becomes very large? This phenomenon goes by
the name of saturation.

5. Some people like to scale the sigmoidal function by an extra parameter,
β, that is σ(βx). Show by sketching what happens to the graph of the
sigmoidal (either the tansig or logsig) as you change β.

It is not necessary to scale the sigmoidal, as this is equivalent to scaling
the data instead (via the weights).

6. Show, using the definition of the hyperbolic sine and cosine, that the
hyperbolic tangent can be written as:

tanh(x) =
sinh(x)

cosh(x)

7. Show that the hyperbolic tangent can be computed as:

tanh(x) =
2

1 + e−2x
− 1

(Matlab claims that this version is faster, but warns about possible
numerical error)

8. Extensions of the transfer function

Some other interesting transfer functions can be used at the nodes.
Here are a couple of unique ones- They are used to encode circular or
spherical information:

(a) The Circular Node (two inputs, two outputs per node):

σ(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)

(b) The Spherical Node (three inputs, three outputs):

σ(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

See [?, ?] for examples of how to implement the last two transfer func-
tion types.

6



Training a Neural Network

As we said previously, training a neural network means to find weights and
biases that minimize the error function. There are several techniques avail-
able to us for doing this- among them:

• Method of Steepest Descent (or Gradient Descent)

• Newton’s Method (an indirect method, solving for where the derivative
of the error is 0).

• Conjuage Gradient (Search along the eigenvectors of the Hessian of the
error)

• Levenburg-Marquardt (A combination of the techniques above).

For us, we can practice using Gradient Descent, and for the other techniques
we’ll rely on Matlab.

Going into the next section, recall that in the exercises, we showed that,
if β = 1, then:

σ′(x) = σ(x) (1− σ(x))

Backpropagation of Error

We start with a simple example: A 1-1-1 network:

x→ y = w2σ(w1x+ b1) + b2

Given a target t, the error is

E(w1, w2, b1, b2) =
1

2
(t− y)2 =

1

2
(t− (w2σ(w1x+ b1) + b2))

2

We want to minimize the error, so we move in the opposite direction of the
gradient. Suppose we let the symbol u denote a generic parameter (either
a weight or a bias). Then given a particular value of the parameter, it
is updated to (hopefully) get a better error. Using gradient descent, u is
updated by:

unew = uold − α
∂E

∂u
= uold + α∆u

where α is called the learning rate, and the change in u is computed via
the chain rule on the error.

Notice that we incorporated the negative sign into ∆u- It will become
clear why we did that (its because of the (t − y) term- the derivative will
always be negative t− y). In particular,

∆u = −∂E
∂y
· ∂y
∂u

= −(t− y) · −∂y
∂u

= (t− y)
∂y

∂u

7



Now let us compute these partial derivatives for all the different parameters:

y = w2S + b2
∂y

∂w2

= S
∂y

∂b2
= 1

∆w2 = (t− y)S ∆b2 = (t− y)

And for the other parameters,

y = w2σ(P ) + b2
∂y

∂w1

= w2σ
′(P ) · x ∂y

∂b1
= w2σ

′(P )

∆w1 = (t− y)w2σ
′(P ) · x ∆b1 = (t− y)w2σ

′(P )

Matlab and the Feedforward Network

Here is an example training session:

P=-1:0.1:1;

T=sin(pi*P)+0.1*randn(size(P));

net=feedforwardnet(10); %10 nodes in hidden layer

net=train(net,P,T); %Train the network

y=sim(net,P); %Get the output of the net

plot(P,T,P,y,’o’); %Plot the data and the net output

tt=linspace(-1,1); %New domain for the plot

yy=sim(net,tt); %Get the output from the net

plot(P,T,tt,yy,’k-’); %Plot together...

Bad things that might happen...

1. A particularly bad random set of initial weights and biases might be
assigned. You should always try training several times to make sure
that your error is a relatively good number- It is easy to get locked into
a local minimum!

Matlab has some methods for assigning weights that tries to give you
a good start, but it is always possible to get a bad set.

2. Saturation. This is when the data is badly scaled. The problem has
to do with our sigmoidal function. An example might be in order:
Consider the table of values

x −1 1 5 8 10 50 5000
σ(x) 0.269 0.731 0.993 0.9997 1.00 1.00 1.00

8



We see that the transfer function begins to output 1 for ANY large
number, so we say that it has lost its ability to distinguish between
input patters (the function has become saturated). The same behavior
happens for very negative input values as well.

If your network begins to output the same numbers for wildly different
inputs, then this is probably the reason (the weights could be large-
See below).

3. Your data may be badly scaled. For example, suppose you have 4
dimensional input, and it represents temperatures from 200 degrees to
300 degrees in the first dimension, error values from 0.0005 to 0.001
in the second dimension, altitudes like 2000 to 5000 feet in the third
dimension, and integers from 1 to 10 in the fourth. Here are some
samples:

(250, 0.0001, 2450, 6)

The second column will disappear in terms of the network- the error
minimization will end up focusing almost entirely on the third column.

If possible, try to keep all of the scalings similar. For example, scale so
that each dimension has mean zero and unit standard deviation (mean
subtract and scale by the inverse of the standard deviation).

Matlab has some data preprocessing built-in when we configure the
network. Keep in mind that the default behavior is to perform scaling,
so if you don’t want scaling, check the documentation.

4. Too many nodes in the hidden layer: Use the test set/validation set
to be sure you’re not memorizing the data (the default settings work
pretty well).

Next: Details of Matlab Implementation of

Neural Nets

9


