
The Best Basis

In this chapter, we will consider the problem of compact data representations.
In particular, we will look at the implications of our definition of “best”, and the
result will be that the best basis is given by the eigenvectors of the covariance
matrix. This well known result goes by several names, depending on the disci-
pline. For example, it goes by the Karhunen-Loéve (KL) expansion, Principal
Components Analysis (PCA), and Principal Orthogonal Decomposition (POD)
to name a few. We will call it PCA as a nod to the statistics.

Perhaps suprisingly, we will compute these eigenvectors without having to
actually compute the covariance matrix. Instead, the SVD will play a very large
role.

0.1 Motivating Example

Suppose I have some data in IR2, and if I plot it, it looks like the data in Figure
1. By inspection, we see that the data looks “mostly” one dimensional, so that
we should be able to store it as constant multiples of a single vector, which takes
the data from two dimensional to one dimensional.

Figure 1: Data in the plane.

When that data was given to use originally in IR2, we assumed that the basis

1



2

was the standard basis for IR2. The nice thing about this basis is that we can
store all kinds of patterns in the plane using this basis.

The problem with this basis is that it is not customized to our data, and so
it is not optimal for the task of representing our data.

Our goal is to get a basis that is somehow optimal for reprsenting a given
set of data.

0.2 Introductory Computations

Let us assume we have a set of data,{
x(1), . . . ,x(p)

}
where each x(i) ∈ IRn. Furthermore, let X be the n× p matrix formed from the
data as columns:

X = [x(1) . . . x(p)]

Given any basis of IRn, say the vectors in Φ = [φ1 φ2 . . .φn], we can expand
any x ∈ IRn in terms of this basis:

x =

n∑
k=1

αkφk = Φα (1)

We will assume our basis is orthonormal, so that the coefficients αk are easy to
compute as the dot product between x and the kth basis vector, and that leads
us to a nice matrix representation for the vector of coordinates:

αk = φTk x ⇒ α =


φT1
φT2
...

φTn

x = ΦTx

Notice that if we now substitute this expression in for α in Equation 1, we get:

x = ΦΦTx

Recall that if Φ is a square matrix, then ΦΦT is the identity, but if it is not,
then this represents a projection of x into the subspace spanned by the columns
of Φ.

Let’s consider this second choice- Suppose we are interested in the subspace
spanned by the first k columns of Φ (where k << n). Then we can write any
point x in the usual way, but split the expression after the kth column:

x =

k∑
j=1

αjφj +

n∑
j=k+1

αjφj



0.2. INTRODUCTORY COMPUTATIONS 3

then the second term of the sum is our error in using k basis vectors to express
x:

xerr =

n∑
j=k+1

αjφj ⇒ ‖xerr‖2 = α2
k+1 + · · ·+ α2

n

Now we’re ready to proceed with determining the best basis. The assump-
tions are:

1. Since the best basis will naturally have its origin at the centroid of the
data, we will assume that the data has been mean subtracted.

2. The best basis should be orthonormal.

3. The data does not take up all of IRn- It lies in some linear subspace.

4. If we have p data points, the error using k columns will be defined by the
mean squared error of the data expansion:

Error =
1

p

p∑
j=1

‖x(j)
err‖2 (2)

It is our hope that our choice of Φ will minimize the given error function in
Equation 2. The following exercises outline that process.

Exercises: Bringing in the Covariance

1. Show that the jth coordinate for a single data point x can be written as:

α2
j = φTj xx

Tφj

2. Show that the inner product and sum can be switched. That is, for a
single vector φ, show that we can write:

p∑
i=1

φTx(i)
(
x(i)

)T
φ = φT

[
p∑
i=1

x(i)
(
x(i)

)T]
φ

3. (Remark) We can write the covariance matrix of X (n × p and mean
subtracted) in the following way:

C =
1

p− 1
XXT =

1

p− 1

p∑
i=1

x(i)
(
x(i)

)T
4. Here is a useful lemma that we’ll use later. Suppose λ1 ≥ λ2 ≥ · · · ≥ λn

are fixed values, and further, we can choose n real numbers, p1, p2, · · · , pn
which are all non-negative and sum to one (like a probability measure).

Then the maximum and minimum of the convex combination below is
given by:

λn ≤ p1λ1 + p2λ2 + · · ·+ pnλn ≤ λ1



4

0.3 The Best Basis

We’re now just about ready to find the best basis. First, let’s summarize what
we have shown in the previous exercises:

1

p− 1

p∑
i=1

‖x(i)
err‖2 =

1

p− 1

p∑
i=1

 n∑
j=k+1

(
α

(i)
j

)2


=

1

p− 1

p∑
i=1

 n∑
j=k+1

φTj x
(i)
(
x(i)

)T
φj


=

n∑
j=k+1

(
1

p− 1

p∑
i=1

φTj x
(i)
(
x(i)

)T
φj

)

=

n∑
j=k+1

φTj

[
1

p− 1

p∑
i=1

x(i)
(
x(i)

)T]
φj

=

n∑
j=k+1

φTj Cφj

Conclusion so far: To minimize the mean-squared error on the k−term
expansion {φi}

k
i=1, we need to minimize:

n∑
j=k+1

φTj Cφj

with the constraints that the vectors
{
φj
}n
j=1

form an orthonormal set.

One way we might do this is to find the best 1-dimensional subspace first,
then reduce the dimensionality of the data by one. Then we will find the best
1-dimensional subspace for the remaining data, and so on.

To do this, we minimize the quantity we found:

min
φ2,··· ,φn

n∑
j=2

φTj Cφj

and since the basis is orthonormal, this is equivalent to:

max
φ1 6=0

φT1 Cφ1

φT1 φ1

Theorem: The maximum (over non-zero φ) of the quantity

φTCφ

φTφ

where C is the covariance matrix of a data set X occurs when φ = v1, the first
eigenvector of C, where λ1 is the largest eigenvalue of C.

The proof will proceed as several exercises.



0.3. THE BEST BASIS 5

Exercises: The Best Basis

1. Justify the following:

Let {λi}ni=1, {vi}ni=1, be the eigenvalues and eigenvectors (respectively) of
the covariance matrix C, where

λ1 ≥ λ2 ≥ . . . ≥ λn
Then we can write C as:

C = λ1v1v
T
1 + . . .+ λnvnv

T
n = V ΛV T

with V TV = V V T = I.

2. We can write any vector φ as a linear combination of the eigenvectors:

φ = a1v1 + . . .+ anvn = V a

3. From the previous exercise, show that:

φTφ = a2
1 + a2

2 + . . .+ a2
n

4. Show that:
φTCφ = λ1a

2
1 + λ2a

2
2 + . . .+ λna

2
n

5. Justify the following: For any nonzero vector φ,

φTCφ

φTφ
=
λ1a

2
1 + λ2a

2
2 + . . .+ λna

2
n

a2
1 + c22 + . . .+ a2

n

≤ λ1

with equality if and only if φ = v1.

By the way, this works in both directions:

λn = λmin ≤
φTCφ

φTφ
=≤ λmax = λ1

So far, we have shown how to find the best one dimensional basis vector! To
find the next best basis vector, we need to determine a vector φ that satisfies
the following:

max
φ⊥v1

φTCφ

φTφ

which, by the same argument as in the previous theorem, is going to be the
second eigenvector of C- this is a consequence of the Spectral Theorem, which
says that our eigenvectors are orthogonal.

The Best Basis Theorem: Suppose that:

• X is an n× p matrix of p points in IRn with mean x̄ ∈ IRn.

• Xm is the n× p matrix of mean-subtracted data.

• C is the covariance of X, C = 1
pXmX

T
m

Then the best (in terms of the mean-squared error defined earlier) orthonormal
k−dimensional basis is given by the leading k eigenvectors of C, for any k.



6

0.3.1 Another View of the Best Basis

Consider p points in IRn as before:{
x(1), . . . ,x(p)

}
and suppose we project this data onto some unit vector v. The result would be
p points along the (unit) vector v. We want to consider the mean and variance
of this data as one-dimensional data:{

vTx(1), . . . ,vTx(p)
}

Exercises

1. Show that the projection of the mean is the mean of the projection.

2. For the next exercise, you can assume that the data has zero mean. Show
that the variance of the projected data is given by

vTCv =
vTCv

vTv

3. In the particular case where v is actually the first eigenvector of C, what
does this expression simplify to?

As we showed earlier, these computations show what our best basis is doing- it
is determining the basis that captures the most covariance.

0.4 Connections to the SVD

Consider the SVD of the n× p matrix X, with rank k:

X = UΣV T

so that U is n× k (and has orthonormal columns), Σ is k × k diagonal matrix
with non-zero entries along the diagonal, and V is p× k with o.n. columns.

By formulating the covariance, we see that:

C =
1

p− 1
XXT =

1

p− 1
UΣV TV ΣTUT = U

(
1

p− 1
Σ2

)
UT

And this is the eigenvector-eigenvalue decomposition of C.
Comparing this to the Best Basis Theorem, we see that:

The best basis vectors for the column space of X are the first k
columns of U . Similarly, the best basis vectors for the row space of
X are the first k columns of V .



0.5. COMPUTATION OF THE RANK 7

Furthermore, the SVD gives a beautiful symmetry to the problem: That is,
knowledge of the best basis vectors of the rowspace gives the best basis vectors
of the columnspace (and vice-versa) by the relationships:

Xvi = σiui XTui = σivi

where σi can be computed from the eigenvalues of the covariance:

λi =
σ2
i

p− 1

This author has seen this symmetry relegated to being a “trick” in at least one
engineering paper!

0.5 Computation of the Rank

Analytically, we can determine the rank of a matrix by counting how many
non-zero singular values are in the SVD. Unfortunately, numerically, this can
be difficult to do- Instead of being exactly zero, some of the eigenvalues may
just be very small (like 10−12). Another issue may come up with noisy data- no
k−dimensional subspace actually contains all of the data. We consider ways of
dealing with this next.

Numerically there are a couple of ways of estimating a good value of the
rank k:

• If there is a large gap in the graph of the eigenvalues, we’ll use that as our
rank (the index of the eigenvalue just prior to the gap).

As a numerical example, suppose the eigenvalues are:

{345, 62, 8, 0.1, 0.001, 0.00001}

In this case, we might have reason to believe that the data can be safely
truncated using three dimensions.

• The unscaled eigenvalues are hard to compare- we’ve seen that they might
be scaled by p or n, and the exact value is not as important as their relative
sizes. We should always consider the normalized eigenvalues- let λ̃i be the
unscaled eigenvalues of C. Then:

λi =
λ̃i∑n
j=1 λ̃j

are the normalized eigenvalues of C. Note that they are all positive, and
sum to one.

As an example, using the previous set of eigenvalues, the normalized values
would be:{

0.831, 0.149, 0.019, 0.0002, 2.4× 10−6, 2.4× 10−8
}



8

Looking at these numbers, we might change our mind from our previous
answer. Since the sum of the first two values is 0.9805, we might just keep
two dimensions.

• The normalized eigenvalue λi can be interpreted as the percentage of the
total variance (or total energy) captured by the ith eigenspace (the span
of ith eigenvector).

In our previous example, that means that the subspace spanned by the
first eigenvector “explains” or “encapsulates” about 83% of the overall
variance, and the two dimensional subspace spanned by the first two
eigevectors encapsulates about 98% of the overall variance in the data.

• We can think of the dimension as a function of the total energy (or total
variance) that we want to encapsulate in a k−dimensional subspace.

• Define the principal components dimension as the number of eigenvectors
required to encapsulate a given percentage of the total variance of the
data:

PCd = k

where k is the smallest integer so that:

λ1 + . . .+ λk ≥ d

(Recall that these are the normalized, ordered eigenvalues!)

• The value you choose for PCd will be problem dependent. For example,
if your data is the graph of a smooth function with no noise, you might
choose PCd = 0.99. If there is a lot of noise corrupting the data, you
might choose PCd = 0.6.

0.6 Matlab and PCA

As we have seen in the previous sections, there are many ways that we might
compute the principal components. We’ll look at several, and discuss the pros
and cons.

Using the SVD directly

In this case, if X has been previously loaded, and we assume our data is orga-
nized column-wise (X is n× p), then we could use the following to compute the
principal components:

[n,p]=size(X);

mx=mean(X,2);

Xm=X-repmat(mx,1,p);

[U,S,V]=svd(Xm,0);

ss=diag(S).^2 % Eigenvalues of the covariance (scaled)

ss=ss./sum(ss); % Normalized eigenvalues.



0.6. MATLAB AND PCA 9

Some comments on this code:

• It is critical to mean subtract your data! Otherwise, your first eigenvector
points to the mean, which is a wasted dimension.

• The additional argument (0) in the SVD command can be used when p is
much larger than n. Matlab will only return the first n columns of V .

• The basis for the data is taken from the first k columns of U , where k is
the dimension you want.

• To visualize the singular values, plot them- it’s convenient to also plot the
point values: plot(ss,’k-*’);

• You can use cumsum(ss) to look at the cumulative sums of the normalized
singular values to see how many you want to use.

This method will work well for “small” data sets, but we’re working harder than
necessary, since we don’t use the vectors U . This is a very accurate method,
however.

Matlab using the Covariance

In this case, we will explicitly compute the covariance matrix, although some
authors warn that this may introduce numerical error. We’ll do it here just
for comparison, and when p or n may be too large for Matlab to handle. For
example, in dealing with photos or video, nmay be in the hundreds of thousands,
while p may only be in the hundreds. In that case, we may want to work with
XTX (which would be p × p) instead of X (n × p). In that case, the Matlab
code would look like the following:

[n,p]=size(X);

mx=mean(X,2);

Xm=X-repmat(mx,1,p);

C=(1/(p-1))*Xm’*Xm;

[V,S]=eig(C);

[V,S]=sorteig(V,S);

ss=diag(S)./sum(diag(S));

There is a problem here- the eigenvalues do not come back ordered. The sorteig
command is not a built-in Matlab function- we have to write it ourselves. It’s
a function that will sort the eigenvalues and eigenvectors out for us:

function [V1,L1]=sorteig(V,L)

%Sorts the eigenvalues in L to descending order, re-orders

%the eigenvectors in V accordingly

lambda=diag(L);

n=length(lambda);

[val,idx]=sort(lambda);



10

val=val(n:-1:1);

idx=idx(n:-1:1);

L1=diag(val);

V1=V(:,idx);

Another way around this problem is not to use the eig command. We might,
for example, use the svd command. In this case, we would have:

[p,n]=size(X);

mx=mean(X);

Xm=X-repmat(mx,p,1);

C=(1/p)*Xm’*Xm;

[V,S,V]=svd(C);

ss=diag(S)./sum(diag(S));

where the diagonal elements of S come out of the SVD in a decreasing fashion
already. Note that the SVD of the covariance is the eigenvector decomposition...

In either case, we get the vectors U by using our relationship: Xvi = σiui:

U=X*V

The columns of U will not have unit length at this point, but they will be
orthogonal. You would normalize them at this point, if desired.

0.7 A Second Proof (Optional)

We give a secondary argument that the first k principal components form the
best k−dimensional subspace for the data (in terms of minimizing the MSE).
We do not argue that this basis is the only basis for which this is true- indeed, as
a k−dimensional subspace, any orthonormal basis will produce the same MSE.

First, we saw that, for any orthonormal basis {ψi}
n
i=1

1

p− 1

p∑
i=1

‖x(i)‖ =
k∑
j=1

ψTj Cψj +
n∑

j=k+1

ψTj Cψj

and this sum is a constant. Therefore, minimizing the second term of the sum is
the same as maximizing the first term of the sum. Using the eigenvector basis,
we get that:

k∑
j=1

φTj Cφj = λ1 + λ2 + . . .+ λk

and we can evaluate the second term directly as well:

1

p− 1

p∑
i=1

‖x(i)
err‖2 =

n∑
j=k+1

φTj Cφj = λk+1 + . . .+ λn



0.7. A SECOND PROOF (OPTIONAL) 11

We also stated that first k eigenvectors of C form the best basis over all
k−term expansions, and we will prove that now:

Let {ψi}
k
i=1 be any other k−dimensional basis. We can write each ψi in

terms of its coordinates with respect to the eigenvectors of C,

ψi =

n∑
k=1

(
ψTi φk

)
φk = Φαi

so that αik = ψTi φk. Given this, we see that:

ψTi Cψi = αTi Λαi

Now, consider the mean squared projection of the data onto this k− dimen-
sional basis:

k∑
j=1

ψTj Cψj =

k∑
j=1

αTj Λαj =

k∑
j=1

λ1α
2
j1 + . . . λnα

2
jn

so that:
k∑
j=1

ψTj Cψj = λ1

k∑
j=1

α2
j1 + λ2

k∑
j=1

α2
j2 + . . . λn

k∑
j=1

α2
jn

We’re just about there- what we want to do now is to show that each of these
coefficients is less than one.

The nifty trick is to consider the coefficients:

{α1i, . . . , αki} =
{
ψT1 φi, . . . ,ψ

T
kφi

}
as the coefficients from the projection of φi onto the subspace spanned by the
ψ’s:

ProjΨ(φi) = α1iψ1 + . . .+ αkiψk

where we have what we need:

k∑
j=1

α2
ji = ‖ProjΨ(φi)‖2 ≤ 1

with equality iff φi is in the span of the columns of Ψ. Now we can say the the
maximum of:

λ1

k∑
j=1

α2
j1 + λ2

k∑
j=1

α2
j2 + . . . λn

k∑
j=1

α2
jn

is found by replacing the coefficients of the first k terms to 1, and the remaining
to zero. This corresponds, of course, to the value of the error found by using
the eigenvector basis.

We have thus shown that the first k eigenvectors of the covariance matrix
forms the best k dimensional subspace for the data- but notice that any basis
for that k dimensional subspace would work.



12

0.8 Sunspot Analysis, Part I

In this example, we show one method for constructing a matrix from a time
series, and from that matrix, we can extract the cyclical information from the
data. This is intimately related to the Fourier analysis that we will discuss later-
and in fact, under certain conditions, it can be shown that the best basis vectors
of oscillatory data are the sinusoids that come out of the Fourier analysis. See
[?] for more details on the method.

First, let us define some terms. We will say that a set of data, x1, . . . ,xn is
translationally invariant if a shift of the data of the form:

x1

x2

x3

...
xn

 −→


xn
x1

x2

...
xn−1

 −→

xn−1

xn
x1

...
xn−2

 −→ . . .

always forms another valid data point. A primary example is a signal time series
of speech. Pieces of the data of length k from any initial time, t0, all provide
for equally valid samples of the voice.

In this example, we consider the sunspot data that comes with Matlab. This
data represents a normalized number of sunspots, approximately every year from
1700 to 1987. The exact method of normalization is not important here- what
is important is the relative cycling of the number of sunspots. Heavy sunspot
activity (years with the peaks) causes problems with electronic communications
on the earth, from cellular phones to cable TV.

There is a rule of thumb that says that the sunspot activity cycles approx-
imately every 11 years. In this example, we will see how the KL eigenvectors
correspond with this value- although remember that a full analysis will need to
wait until we’ve discussed the Fourier analysis.

We first load the data and from this data we make a circulant matrix.

load sunspot.dat

npts=288;

t=sunspot(:,1);

x=sunspot(:,2);

plot(t,x); %Do this if you haven’t seen the data

meansun=mean(x);

x=x-meansun; %Mean subtract the data

X=zeros(npts,npts); %Will hold the matrix

X(:,1)=x;

idx=1:npts;

%Create the circulant matrix

for j=2:npts



0.9. EIGENFACES 13

idx=[idx(npts) idx(1:npts-1)];

X(:,j)=x(idx);

end

[U,S,V]=svd(X);

ss=diag(S)./sum(diag(S));

Type this into Matlab, and remark on the following:

• Plot the first 20 values of ss. Here you see that the singular values are
doubled up, which corresponds to a doubling up of the eigenvalues of the
covariance. Each of these two dimensional spaces correspond to a sinusoid
of a certain period.

• To see the sinusoids, plot the first two eigenvectors, then the next two,
then the next two. You’ll see them line up like sine and cosine pairs for
each period.

• The first two eigenvectors will correspond to the sine/cosine pair that best
explain the data. It is this period that is approximately 11- Try to estimate
the period from its graph (we will numerically estimate this period in the
Fourier analysis section).

0.9 Eigenfaces

The application of PCA to face recognition seems to have begun in the late
1980’s with the paper by Sirovich and Kirby [?, ?]. Since then, there has been
a quite extensive body of research in face recognition using similar techniques.
A good starting point for locating additional resources and bibliographies are
available on the internet; for example, the Face Recognition Homepage [?] and
MIT’s Artificial Intelligence Lab [?]. A recent text [?] also gives more details
on PCA, its application to faces, and more applications to other data analy-
sis problems. We also note that current research in psychology and computer
science is suggesting that perhaps the actual biological processes involved in
familiarity are related to PCA [?].

In face recognition problems, we are given a large collection of photos of
faces. In this example, we assume that all photos are the same size, that they
are grayscale, that they have basically the same background, and have been
manually centered (all eyes are at approximately the same location).

To be more specific, suppose we have 30 photos, and each has 262 × 294
pixels. Then each photo is a vector in IR77,028. We look for a small dimensional
basis, Φ, in which to represent the space of all faces in the database, so that if
x(i) is a face, it can be represented by its (much lower dimensional) coordinates,[
x(i)

]
Φ

.
We would like to use the PCA algorithm to compute this basis, but this

is a very large eigenvector problem- The covariance matrix is 77028 × 77028.



14

However, using the SVD we avoid computing the covariance matrix directly
(which is good, since it can introduce rather large numerical errors).

Let X be the 77028×30 matrix formed from storing our photos, and suppose
we have subtracted the mean “face” (as a vector in IR77028). Then we find the
best basis in IR77028 via the SVD:

[U,S,V]=svd(X,’econ’);

Be sure to include the econ option- That way, the matrix U will be 77028×30
instead of 77028×77028! The matrix S holds the singular values of X (a square,
diagonal matrix), and V will be 30× 30.

Our next step is to look at the dimensionality of the data- This means that
we look at the graph of the (normalized) eigenvalues of the covariance to see
if there are any natural gaps (as we discussed earlier). For visualization, we
normally would include only 2 or 3 dimensions.

Either way, the columns of U are in IR77,028, and we will choose only a “small”
number of them. Here is the interesting translation: Since each eigenvector ui is
a vector in IR77,028, it can be realized as a photograph (face) since it has 262×294
pixels! Thus the term “eigenface” was coined (I’m not sure who originally came
up with it), and we get a set of orthonormal “faces” by which all faces in the
database can be encoded. As an example, at least one commercial package uses
128 basis vectors [?].

Once the dimension has been set, we can numerically encode every face in
terms of the weights of the linear combinations- this is the key to actual face
recognition. You encode someone’s face, and search the database for the closest
match. Using the SVD, the “encoding” is the coordinate vector:

Coord=U(:,1:2)’*X;

This matrix multiplication has dimensions: (2× 77028)(77028× 30), so the
matrix Coord is 2 × 30 (for 30 points in IR2). These are the “low dimensional
representations” of the data, and so the faces can be plotted in IR2.

Similarly, the reconstruction of the faces using only the two basis vectors
can be computed as the following (do you see the projection?):

Recon=U(:,1:2)*Coord;

%To see the 4th reconstructed face:

image(reshape(Recon(:,4)+MeanFace),262,294)

The matrix Recon is 77028× 30, and is the two dimensional approximation
to the data in X.

0.10 A Movie Data Example

A movie is a collection of photographs, so that we can similarly construct a
“best basis” for a movie segment. In this example, the author sat in front
of an inexpensive webcam and tried to move in a periodic fashion. Figure 2



0.10. A MOVIE DATA EXAMPLE 15

Figure 2: Four sample frames from the 109 frame movie. Each frame is 120×160.

shows some sample frames from the movie1 A script was then written to load
each frame into Matlab. In this case, we have 109 frames, and each frame has
120× 160 = 19200 pixels, and the movie is in grayscale.

To reconstruct the movie in Matlab, use the following commands:

load author1 %This is a matrix Y1 that is 19,200 x 109

for j=1:109

A=reshape(Y1(:,j),120,160);

imagesc(A);

if j==1

colormap(gray);

end

M(j)=getframe;

end

To replay the movie, type movie(M).

1As a technical note, the webcam recorded the motion in AVI format, which was sub-
sequently converted to MPEG and then split using software that is freely available on the
internet.



16

Exercise: Find the best basis for the movie clip. Plot the mean image and the
first five eigenvectors (as movie frames or images). Plot the movie in the best
three dimensional coordinate system. Comment on what you see- for example,
is the movie actually periodic? What kinds of features are being encoded in the
eigenvectors?


