Matlab and Linear Algebra, Homework 9A

The following are meant to be done on Matlab (or Octave). Please turn in a printout of your Matlab work, or a listing of your Matlab commands.

1. Let A be given as below in Matlab format (so you can copy/paste it):

Construct a matrix N whose columns form a basis for the null space of A, and construct a matrix R whose *rows* form a basis for the row space of A. Matlab commands that you may find useful: **rref** and **null**. If you use **null**, use the "rational basis" option so that the vectors are easy to read. In both cases, you should look up the help files-For example, **doc null**.

Perform a matrix computation that confirms the fact that the row space is orthogonal to the null space of a matrix.

2. Let A be given as below in Matlab format. Perform a matrix computation that checks to see if the columns are orthogonal to each other:

3. Let A be from the previous problem. What is the result of the following Matlab commands?

temp=sqrt(sum(A.*A)); B=A./repmat(temp,8,1);

- 4. Let U be the matrix A from the previous question with normalized columns.
 - (a) Compare $U^T U$ and $U U^T$. How do they differ?

(b) Generate a random vector \mathbf{y} in \mathbb{R}^8 and compare

 $\mathbf{p} = UU^T \mathbf{y}$ and $\mathbf{z} = \mathbf{y} - \mathbf{p}$

Explain why \mathbf{p} is in the column space of A. Verify that \mathbf{z} is orthogonal to \mathbf{p} .

- (c) Verify that \mathbf{z} is orthogonal to each column of U (one line please!)
- (d) Notice that $\mathbf{y} = \mathbf{p} + \mathbf{z}$, with $\mathbf{p} \in \operatorname{Col}(A)$. Explain why $\mathbf{z} \in (\operatorname{Col}(A))^{\perp}$.
- 5. Let \mathbf{y} be a random vector in \mathbb{R}^8 , and let A be the matrix from Exercise 2 (you may also use the matrix U from the previous problem).
 - (a) What matrix computations could you use to determine if $A\mathbf{x} = \mathbf{y}$ has a solution?
 - (b) If the equation has no solution, what matrix computation would produce the orthogonal projection of \mathbf{y} into the column space of A? (Call it \mathbf{g}).
 - (c) Now that $A\mathbf{x} = \mathbf{g}$ has a solution, how many solutions does it have? (What matrix computations are you making?)
 - (d) Find the solution using the "slash" command. What matrix computations could you use to make sure your solution is in the row space of A?
- 6. (Optional) Suppose you have a 2×2 matrix A, and you choose the four elements of A at random. What eigenvalues might you expect, and with what distribution? HINT: It depends on whether you use rand or randn or something else.

Write Matlab code that will select elements of A at "random", then computes the eigenvalues, and determines if they are real or not. You should output the percentage of time the eigenvalues are real versus complex.