Week 9 Homework

Matlab Homework

- 1. Use the Matlab template to solve the knapsack problem. Write down the things you should take:
- 2. Create 60 random points (or vectors) in \mathbb{R}^{10} , and save them in a variable X. Let A be a matrix that is 10×2 , and holds 2 orthonormal, non-zero, vectors in \mathbb{R}^{10} . We can construct such a matrix using the following commands:

[A,R]=qr(randn(10,2),0);

You can discard the matrix R from that. By the way, the QR decomposition is actually the Gram-Schmidt orthogonalization process. Note that the span of the columns of A form a 2-dimensional subspace of \mathbb{R}^{10} . Such a subspace is isomorphic to the plane.

- (a) For each point in X, find the coordinates with respect to the columns of A. Hint: The result should be a matrix that is either 60×2 or 2×60 , depending on how you set it up.
- (b) Plot the points in the plane (as 60 points in \mathbb{R}^2).
- (c) Find the projection of the points in X to the space spanned by the columns of A.
- (d) Find the distance from \mathbf{x}_1 to the column space of A.
- 3. Suppose I have 20 points (or vectors) in \mathbb{R}^{10} . If I project all of these points onto a unit vector $\mathbf{u} \in \mathbb{R}^{10}$, all the points will project to scalar multiples of \mathbf{u} .
 - (a) Show that the mean of the projection is the projection of the mean.
 - (b) Assume that the mean is zero, $\sum \mathbf{x}_i = 0$, and recall that the covariance matrix C is defined as:

$$C = \frac{1}{n-1} \sum_{i=1}^{20} \mathbf{x}_i \mathbf{x}_i^T$$

Show that the variance of the data projected to \mathbf{u} is given by the following, which is a scalar:

 $\mathbf{u}^T C \mathbf{u}$

Hint: We're taking the variance of the data in the set:

$$\left\{\mathbf{x}_{1}^{T}\mathbf{u},\mathbf{x}_{2}^{T}\mathbf{u},\cdots,\mathbf{x}_{20}^{T}\mathbf{u}\right\}$$

(c) (Continuing the previous problem) If \mathbf{v}_1 happens to be an (unit) eigenvector of C with eigenvalue λ_1 , and we project our data to the eigenvector, then what will the covariance be?

- 4. Try to reason out each of the following Matlab commands. Assume that $x=[1 \ 3 \ 2 \ 1 \ 3]$.
 - (a) x*x'
 - (b) x.*x
 - (c) x = max(x)
- 5. Write a Matlab script file to plot sin(x) in red, sin(2x) in black, and sin(3x) in green, all in the same plot. Assume $x \in [4, 8]$.