Week 9 Homework

Matlab Homework

1. Use the Matlab template to solve the knapsack problem. Write down the things you should take:
2. Create 60 random points (or vectors) in \mathbb{R}^{10}, and save them in a variable X. Let A be a matrix that is 10×2, and holds 2 orthonormal, non-zero, vectors in \mathbb{R}^{10}. We can construct such a matrix using the following commands:
```
[A,R]=qr(randn(10,2),0);
```

You can discard the matrix R from that. By the way, the QR decomposition is actually the Gram-Schmidt orthogonalization process. Note that the span of the columns of A form a 2-dimensional subspace of \mathbb{R}^{10}. Such a subspace is isomorphic to the plane.
(a) For each point in X, find the coordinates with respect to the columns of A. Hint: The result should be a matrix that is either 60×2 or 2×60, depending on how you set it up.
(b) Plot the points in the plane (as 60 points in \mathbb{R}^{2}).
(c) Find the projection of the points in X to the space spanned by the columns of A.
(d) Find the distance from \mathbf{x}_{1} to the column space of A.
3. Suppose I have 20 points (or vectors) in \mathbb{R}^{10}. If I project all of these points onto a unit vector $\mathbf{u} \in \mathbb{R}^{10}$, all the points will project to scalar multiples of \mathbf{u}.
(a) Show that the mean of the projection is the projection of the mean.
(b) Assume that the mean is zero, $\sum \mathbf{x}_{i}=0$, and recall that the covariance matrix C is defined as:

$$
C=\frac{1}{n-1} \sum_{i=1}^{20} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

Show that the variance of the data projected to \mathbf{u} is given by the following, which is a scalar:

$$
\mathbf{u}^{T} C \mathbf{u}
$$

Hint: We're taking the variance of the data in the set:

$$
\left\{\mathbf{x}_{1}^{T} \mathbf{u}, \mathbf{x}_{2}^{T} \mathbf{u}, \cdots, \mathbf{x}_{20}^{T} \mathbf{u}\right\}
$$

(c) (Continuing the previous problem) If \mathbf{v}_{1} happens to be an (unit) eigenvector of C with eigenvalue λ_{1}, and we project our data to the eigenvector, then what will the covariance be?
4. Try to reason out each of the following Matlab commands. Assume that $x=\left[\begin{array}{llll}1 & 3 & 2 & 1\end{array}\right]$ 3.
(a) $x * x$ '
(b) $x \cdot * x$
(c) $x==\max (x)$
5. Write a Matlab script file to plot $\sin (x)$ in red, $\sin (2 x)$ in black, and $\sin (3 x)$ in green, all in the same plot. Assume $x \in[4,8]$.

