
A First Look at Matlab

At the end of this session, you should be able to:

• Define matrices and vectors as variables.

• Do some basic operations on matrices and vectors in the command
window.

• Write a simple function with multiple inputs and multiple outputs. Be
able to call the function from the command window.

• Produce a simple plot.

• Write a simple script file and run it from the command window.

Let’s get started- I’ll assume that you have already put the Matlab icon on
your toolbar, and that you have a folder called Modeling and a subfolder
called Lab01 (no white space!).

A Quick Note if You Know Maple

Matlab (short for Matrix-Laboratory) was originally designed as a front end
for numerical linear algebra routines (numerically finding eigenvalues and
eigenvectors, etc.). Now it is an industry standard for fast development of
numerical solutions to mathematics.

Matlab is different than Maple: Maple was designed to work symbolically
(e.g., factor a polynomial, compute derivatives). If you need to do symbolic
work, you should use Maple. If you need to do numerical work, use Matlab.

If you have had a class in computer programming, then Matlab will look
very familiar. There are three ways of running Matlab, and we will consider
each:

• Run Matlab “live”, by typing commands in the command window.

• Run Matlab by first writing a script file with Matlab commands. A
script file is just a text file with the Matlab commands typed in (so you
don’t have to type them “live”.

• Run Matlab by calling programs that you have written. We’ll see how
to do this in just a moment.

Starting the Matlab Program

Matlab starts by selecting the Matlab icon we’ve already put on our toolbar.
You should see a window with several subwindows, similar (but probably not
the same) to the one shown in Figure ??.

1

Working in the Command Window

Here are some sample tasks together with the Matlab commands. Type them
into the command window to verify your answer.

• Compute the value of e−1.1 + sin(4π)

SOLUTION: The exponential function is defined as: ex =exp(x), and
the value of π is a built in value, pi (must be lowercase P). An asterisk
is used to define multiplication:

exp(-1.1)+sin(4*pi)

• Multiply the complex numbers together: (1− i)(4 + 2i)

SOLUTION: If you have not already used the letter i for something in
an earlier line, then the default is to assume i =

√
−1 (same for the

letter j- but that is for engineers, not mathematicians!). You should
get 6− 2i if you type:

(1-i)*(4+2*i)

• Make a 3 × 5 matrix with some numbers in it. Assign the matrix to
the variable A:

SOLUTION: I’m just making up some numbers- Pay attention to how
the matrix is defined:

A=[1 2 3 4 5;5 4 3 2 1;0 0 0 1 1];

NOTE: Matlab treats the equal sign as “assignment” (the thing on the
right is assigned to the variable name on the left).

For example, if we want to transpose our matrix and assign the result
to the variable B, we would just type:

Figure 1: Matlab’s main window. Take a look around, and find the directory
bar and the command window.

2

B=A’;

And now the variable B holds AT .

NOTE: What happens if you don’t put a semi-colon at the end of the
line? (Answer: Matlab will print the result on the screen).

• What will the following commands do?

x=5;

x=x+3;

Answer: First, the value 5 is assigned to the variable x. Next, x+ 3 is
computed as 8, and finally, the value of 8 is assigned to the variable x.

What happens if you type 5=x? (try it!)

• Enter the following matrix and compute B = ATA, C is the sine of
each element of A.

A =

[
1 2 3 4
5 6 7 8

]
SOLUTION:

A=[1 2 3 4; 5 6 7 8];

B=A’*A;

C=sin(A);

• Continuing with the example, let B be the matrix defined below. Com-
pute the element-wise product of A and B:

B=[0 1 0 1;1 0 1 0];

C=A.*B

NOTE: The “dot” operator will be used if the operation is performed
elementwise (as opposed to the operation as it is defined on a matrix).
For example, if x = [1, 2, 3, 4, 5], if we want to compute [21, 22, 23, 24, 25],
and [12, , 22, 32, 42, 52], we would type:

x=[1 2 3 4 5];

y=2.^x;

z=x.*x

• Notice what the following commands do:

A=[1 2 3 4;-1 2 1 0];

A(2,:)

A(:,3)

A(2,4)

Note: The colon is used to denote all rows (or all columns).

3

Creating arrays and vectors

• a:b

Gives a row created by a, a+ 1, a+ 2, . . . , a+ n where n is the largest
integer so that a+ n ≤ b

Example: 3.5:7

• a:b:c

Produces the numbers from a to c by adding b each time:

a:b:c gives [a, a+ b, a+ 2b, . . . , a+ nb]

where n is the largest integer so that a+ nb ≤ c. For example, 3 : 0.2 :
4.7 returns what?

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the num-
ber b (inclusive). For example, x=linspace(2,3.5,40) produces 40
numbers evenly spaced beginning with 2 and ending with 3.5.

SHORTCUT: Leaving off the third number c will give you 100 numbers
between a and b (That is, c = 100 is the default value.)

Compare this with the colon operator. We would use the colon operator
if we want to define the length between numbers, and use linspace if
we want to define the endpoints.

• Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m× n array of random numbers (uniformly
distributed) between 0 and 1. If you just want a single random number
between 0 and 1, just type rand

A=randn(m,n) produces an m × n array of random numbers (with a
normal distribution) with zero mean and unit variance. If you want a
single random number (with a normal distribution), just type randn

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B
by replicating B m times down and n times across.

Example: Let B =

[
1 2
3 4

]
. Then A=repmat(B,2,3) creates the ar-

ray:

4

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Accessing Submatrices

Let A be an m× n array of numbers. Then:
The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: What kind of an array would the following command produce?

A([1,3,6],[2,5])

A 3× 2 matrix consisting of the elements:

A(1, 2) A(1, 5)
A(3, 2) A(3, 5)
A(6, 2) A(6, 5)

Example: Create a 5× 5 zero array, and change it to:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

Answer:

A=zeros(5,5); %Create the matrix of zeros

b=[1 2 3;4 5 6; 7 8 9];

A(2:4,2:4)=b;

Note also the use of the % sign. It is used to denote comments; that is, Matlab
would ignore everything on the same line after the % sign.

5

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix.
Before doing it, we define [] as ”the empty array”: the array with nothing
in it.

In the following, let A be a 4 × 5 array, let b be a 1× 5 row, and c be a
4× 1 column.

Examples of use (each of these are independent from the previous):
The command: Produces:
A(1,:)=[]; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete column 3.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as row 1.
A(:,6)=c; Add c as the last column.
d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.
A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.
A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

Example: Matlab comes with some built-in data sets. One such set is the
image of a clown. For fun, we’ll load the array in, display it, then we’ll
remove all of the even rows and columns, then re-display it:

X=load clown.mat

whos

X(4:6, 6:10) %Look at some of the values in the array X.

image(X);

colormap(map);

X(2:2:200,:)=[];

X(:,2:2:320)=[];

image(X);

Once you’re done, you may want to clear the memory and the screen:

clear

clc

If you want to re-do the clown again, you do not need to retype it! Use the
up-arrow key to bring back the commands you typed. You can also type the
first few characters, then use the up-arrow key:

X=(up arrow)

Solving Ax = b for x

To solveAx = b for x, Matlab has two basic commands: x=A\b or x=pinv(A)*b.
The command pinv(A) computes the pseudoinverse of A, which we will dis-
cuss later in the section dealing with the Singular Value Decomposition.

6

In linear algebra, there were three possible outcomes for solving Ax = b
for x. They were:

1. A unique solution.

2. An infinite number of solutions.

3. No solution.

Matlab will always give exactly one solution. We need to interpret that
solution in the second two cases. In the case of an infinite number of solutions
(we have free variables in this case, also called an underdetermined system),
the two methods may give different answers:

• x=A\b provides the most zeros in x.

• x=pinv(A)*b gives x with the smallest norm.

Example: Let A =

[
1 0 −2
0 1 1

]
, with b =

[
9
3

]
. Then the full solution

is:

x =

 9 + 2t
3− t

t

 (1)

In Matlab, the result of typing x=A\b is x = [0,−15/2,−9/2]T and the result
of typing x=pinv(A)*b is x = [4, 11/2,−5/2].

(MATLAB HINT: You can get Matlab to return numbers as fractions by
typing format rat)

In the case of an overdetermined system (a system with no solution), Mat-
lab will automatically return the least squares solution- that is, the answer
x∗ will be the minimum of ‖Ax− b‖:

‖Ax∗ − b‖ ≤ ‖Ax− b‖, for all x

In general, you should always use the forward slash (for help, type help slash):
x=A\b which automatically determines a best numerical method. That is,
sometimes its best (numerically) not to explicitly compute the pseudoinverse
first.

Exercise Set I

1. What is the Matlab command to create the array x which holds the
integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be
that zeros out the even-numbered indices (That is, x(2), x(4), x(6), . . .
)?

7

3. What is the difference in Matlab between typing: x=[1 2 3] and
x=[1,2,3] and x=[1;2;3]? What happens if you type a semicolon
at the end of the commands (i.e., x=[1 2 3];)?

4. (Referring to the last question) For each of those, what happens if you
type x.^2+3? What happens if you forget the period (e.g., x^2+3)

5. What do the following commands do: x=2;3;6;, x=2:3:6;, a=2.3:0.5:3.5;

6. Describe the output for each of the following Matlab commands. Recall
that typing a semicolon at the end of the line suppresses Matlab output-
to see the results, leave off the semicolon.

A=rand(3,4);

A([1,2],3)=zeros(2,1);

B=sin(A);

C=B+6;

D=2*B’;

E=A./2;

F=sum(A.*A);

7. What will Matlab do if you type in:

A=rand(3,4);

A(:)

A(7)

NOTE: This is very bad programming style! Don’t do it unless you
know what you’re doing!!

8. What is the Matlab command to perform the following:

(a) Given an array x, add 3 to each of its values.

(b) Given an array A, remove its first column and assign the result to
a new array B.

9. What will the following code fragment do?

a=1:10;

for k=1:10

h=ceil(length(a)*rand);

b(k)=a(h);

a(h)=[];

end

Compare this with a=ceil(10*rand(10,1)) and a=randperm(10)

10. Use the Quick Summary sheet to help you write a code fragment that
takes a random matrix X and re-sorts the columns so that the first
column has the smallest size and the last column has the greatest size.

8

How do I get a Plot?

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

You’ll see that we had to create a domain array and a range array for the
function. We then plot the arrays. For example,

plot([1,2],[3,4]);

will plot a line segment between the points (1, 3) and (2, 4). So, Matlab’s
plotting feature is drawing small line segments between data points in the
plane.

Examples

1. Matlab can also plot multiple functions on one graph. For example:

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,x1,y2,x2,y3);

produces a single plot with all three functions.

2. plot(x1,y1,’*-’);

Plots the function y1, and also plots the symbol * where the data points
are.

3. plot(x1,y1,’k*-’,x2,y3,’r^-’);

Plots the function y1 using a black (k) line with the asterisk at each
data point, PLUS plots the function y2 using a red line with red trian-
gles at each data point.

Type doc plot to see all the different built in colors and symbols you
can use in a plot.

4. The following sequence of commands also puts on a legend, a title, and
relabels the x− and y−axes: Try it!

9

x=linspace(-2,2);

y1=sin(x);

y2=x.^2;

plot(x,y1,’g*-’,x,y2,’k-.’);

title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);

xlabel(’Dollars’);

ylabel(’Sense’);

5. Other Things: If you look at the plotting window from the last example,
you’ll see lots of things that you can do. For example, there’s a zoom
in and a zoom out feature. You can also edit the colors and symbols
of your plot, and the title, legend and axis labels. Try them out!

M-Files: Functions and Scripts

A function has a given input (from the domain), and produces something
(from the range). Some functions are built-in (like sine, etc.). To extend
the usefulness of Matlab, we can write our own functions. Here is a simple
example that takes in two things- a constant and an array, and outputs three
things- The sum of the array and the constant, the product and the difference
(not a very useful function).

Open Matlab’s editor (type edit in the command window), and type the
following:

function [A,B,C]=myfunc(x,Z)

% [A,B,C]=myfunc(x,Z)

% Inputs: x is a constant, Z is an array

% Outputs: A=x+Z, B=x*Z and C=Z-x

A=x+Z; B=x*Z; C=Z-x;

temp=A+B+C

Save this file as the function name with a .m. suffix, or, myfunc.m. The
line with temp is meaningless, but is there to show you something. But first,
some things to notice about a function:

The first line should always begin with the word “function”. You should
always include remarks that tell you how to use the function.

Now in the command window, we can type things like:

help myfunc

A=rand(3,2);

c=5;

[H1, H2, H3]=myfunc(c,A)

whos

10

Notice that the array temp, while computed during the execution of the
function, is gone once the function is finished. Therefore, inside of a function
call, you can write your variables as if nothing has been defined (except your
input variables).

A script file is a file that includes Matlab commands. When Matlab
executes a script file, it simply executes the commands that are written there
as if you were typing them in.

Here’s an example. Open the editor, type these lines in and save as
myscript.m. It looks very similar to the function-

clear

clc

A=rand(3,2);

c=5;

H1=c+A;

H2=c*A;

H3=A-c;

temp=H1+H2+H3

To run the script, in the command window type myscript, then you can
type whos to see what the new variables are.

Exercise Set II

1. Let x be a row. What happens if you type plot(x)?

2. Write a Matlab script file to plot y = sin(x) in red, y = sin(2x) in
black, and y = sin(3x) in green, all on the same plot. You can assume
that x ∈ [−4, 8].

3. When we compute with numbers, some errors can occur. Try typing
each of the following into Matlab, and see what happens:

• eps (This is machine epsilon)

• 1/0 (Think about what this means before trying it!)

• -1/0

• 0/0

• 1/Inf

• Inf+Inf, Inf-Inf, Inf/Inf, Inf/0

4. Try to reason out what you think Matlab will do with each of the
following, then type it in and record what you get:

11

x=[1 3 2 1 3];

max(x)

[vals, idx]=sort(x)

find(x==max(x))

mean(x)

sum(x)

5. Write a Matlab function that will take in two matrices A, B of the
same dimensions, and will output a matrix C so that

C(i, j) = max {A(i, j), B(i, j)}

The function will use the built-in max function- See Matlab’s help file
by typing (in the command window) doc max

6. What does this function do (think about what each line does individ-
ually; use the help features in Matlab)? The input B is an m × n
matrix.

function A=mystery(B)

[m,n]=size(B);

Temp=sqrt(sum(B.*B));

A=B./repmat(Temp,m,1);

(Hint: It is often very useful to have a matrix where each column has
unit length).

12

