An Introduction to Empirical Modeling

Douglas Robert Hundley
Mathematics Department
Whitman College

January 20, 2004

Contents

1 Preface

2 Data
2.1 Representations of Data, Part T
2.2 Representations of Data, Part IT
2.3 Representing Functions instead of Data.
2.4 Summary . . o. ... e
2.5 Exercise Seto

I Background

3 Linear Algebra

3.1 Representation, Basis and Dimension
3.2 The Four Fundamental Subspaces
3.3 Special Mappings: The Projectors
3.4 Exercises e
3.5 The Decomposition Theorems

3.5.1 The Eigenvector/Eigenvalue Decomposition

3.5.2 The Singular Value Decomposition

4 Statistics

4.1 Functions that Define Data,

4.1.1 The probability distribution function
4.2 The Mean, Median, and Mode
4.3 The Variance and Standard Deviation

4.3.1 Covariance and Correlation Coefficients
4.4 The Covariance Matrix.« o v i v v i i v i e i
4.5 Exercises e e e
4.6 Linear Regression
4.7 The Median-Median Line:

4 CONTENTS
5 The Theory of Learning 51
5.1 Putting it Together: The 3 Phases of Learning 54
5.2 Exercise Set 57
5.3 A Case Study in Reinforcement Learning 58
5.3.1 Strategies for the n—armed bandit 59

5.4 Donald Olding Hebb and Hebbian Learning 65
5.4.1 Linear Neural Nets and Hebbian Learning 66

5.4.2 Exercise 68

IT Data Representations 71
6 The Best Basis 73
6.1 The Karhunen-Loéve Expansion 73
6.2 Exercises: Finding the Best Basis 75
6.3 Connectionstothe SVD 7
6.4 Computation of the Rank 78
6.5 Matlab and the KL Expansion 79
6.6 The Details 81
6.7 From KL to Fourier 83
6.8 Eigenfaces 83

7 A Best Nonorthogonal Basis 95
8 Local Basis and Dimension 97
9 Data Clustering 99
9.1 Backgroundo 99
9.2 The LBG Algorithm 102
9.3 KohonensMap 104
94 Neural Gas 110
9.4.1 Matlab and Neural Gas 113

9.4.2 Project: Neural Gas 116

9.5 Clustering and Local KL 116
9.51 VQPCAinMatlab 120

9.6 A Comparison of the Techniques 122
IITI Functional Representations 125
10 Linear Neural Networks 127
10.1 Introduction and Notation 127
10.2 Training a Linear Net 129
10.3 Time Series and Linear Networks 135
10.4 Script file: APPLIN2 137
10.5 Matlab Demonstration L. 138

10.6 Summary 139

CONTENTS

11 Radial Basis Functions
11.1 Polynomial Regression
11.2 Distance Matrices. i i e e e e
11.3 Radial Basis Functions
11.4 Interpolation via Radial Basis Functions
11.5 Generalization
11.6 Orthogonal Least Squares
11.7 Homework: Iris Classification
11.8 Sample Script File o oo

12 Neural Networks
12.1 Biological Motivation
12.2 The Three Layer Feedforward Neural Network
12.3 Trainingand Error oo oL

12.3.1
12.3.2

Backpropagation of Exrror,
Nonlinear Optimization Techniques.

12.4 Neural Networks and Matlab

12.4.1

Training Notes

12.5 Post Training Analysis
12.6 Example: Alphabet recognition
12.7 Project 1: Mushroom Classification
12.8 Autoassociation Neural Networks

IV Time and Space

13 Fourier Analysis
13.1 Introduction L L

13.1.1
13.1.2

From Real to Complex
Exercises: oo

13.2 Implementation of the Fourier Transform

13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6

Exercises: e
Matlab and the FFT
Exercises e
Discretization Produces Orthogonal Vectors
Exercises: e
Interpreting the Matlab Results

13.3 Applying the FFT,

13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8

Matlab Example: Fourier Interpolation
Exercises:
Matlab Example: Analyzing a Known Signal
Matlab Exercises: Filtering, Part I
Matlab Example: Sunspot Analysis
Matlab Exercise: Filtering, Part IT
Matlab Exercise: Leakage
Matlab Exercise: The Gibb’s Phenomena

141
141
143
145
147
148
152
158
158

161
161
164
166
167
169
169
172
175
178
179
180

187
188

6 CONTENTS

13.3.9 Properties of the Transform and Spectrum
13.4 Short Term Fourier and Windowing
13.4.1 Windowed Fourier Transform
13.5 Fourier and Biological Mechanisms
13.5.1 The Visual Cortex
13.5.2 The Cochlea and Cochlear Implants
13.6 Chapter Summary

14 Wavelets

15 Time Series Analysis

V Appendices

A An Imtroduction to Matlab
A1 Whatis Matlab?
A.2 Introductory Commands
A.2.1 Helpful Administrative Commands
A.2.2 A Programming Note: Assignment v. Equality
A3 Exercise Set
A4 Matrices oL
A.4.1 Matlab commands associated with Arrays
A42 Solving Ax=bforx.....................
A5 Exercise Set
A6 HowdoIgetaPlot?
A6.1 Examples e
A.6.2 Plotting in Three Dimensions
A.7 M-Files: Functions and Scripts
A71 Debugging Hints
A8 Exercise Set

B The Derivative
B.1 The Derivativeof f.
B.1.1 MappingsfromRtolR
B.1.2 Mappings from R to R" (Parametrized Curves)
B.1.3 Mappings from R" to R: Surfaces
B.14 Mappingsfrom R"toIR™
B.2 Worked Examples: 0o
B.3 Optimality
B.3.1 Necessary and Sufficient Conditions
B.4 Worked Examples,
B.5 Exercises

C Optimization

D Matlab and Radial Basis Functions

222
224
224

CONTENTS 7

VI Bibliography 251

VII Index 255

CONTENTS

Chapter 1

Preface

This is a book about empirical modeling, and it is designed for undergraduates
with a background only in calculus and linear algebra. By empirical, we mean
that there is no underlying analytic model- we are attempting to extract meaning
(or patterns) from raw data, and therefore many of the techniques and problems
stem from areas of machine learning.

The goals of a course drawn from this text are to:

Expose undergraduates to a wide range of “new” ideas that are in current
use in industry.

Give students background in manipulating large data sets and introduce
the questions that arise.

Use the Singular Value Decomposition as a centerpiece for our computations-
The SVD is arguably the most important theorem from linear algebra, and
yet, it receives little attention.

Get the reader into the computations as quickly as possible so that he/she
can begin experimenting independently.

What this book will not do:

We will not go deeply into statistics. Some might claim that this entire
topic should be a statistics course. A better way to view this book is as
a way to give students a better understanding of why statistics should be
used. A student at the end of this course will be ready to ask the right
questions, and should seek out statistics as one approach to answering the
questions.

We will not go deeply into optimization theory. An appendix is devoted to
the treatment of derivatives for multivariate functions, and some optimiza-
tion notes are also included. At the undergraduate level, it is appropriate
to give the students an intuitive background, and let them experiment.

9

10 CHAPTER 1. PREFACE

e We introduce the ideas behind neural networks, and will use them ex-
tensively, but much of the statistical theory has been left out. Readers
interested in these particular topics can find some great references out
there, and we will list them in the appropriate places.

With those caveats in mind, then what is this book? It is a text that is
meant to be introductory, and it is meant to be a mathematics book. We will
use linear algebra extensively, and so we will be looking at data analysis from
more of a geometric or topological point of view. For graduate students, this
textbook could be treated as a companion text to a book from my colleague,
Michael Kirby, “Geometric Data Analysis”, which I highly recommend. In fact,
much of the research presented in this text was a collaboration between myself
and Michael.

In this book, we will often return to the “big picture”, and draw connections
between courses in order to build abstractions. For example, “data” can come
in many forms- I might consider a data “point” as a vector, or as a human face,
or as an entire movie (in Part IT, Data Representations). I might consider a data
point as an entire function (in Part III, Functional Representations). What is
unifying in all representations is the concept of the vector space, and this is
where we begin.

Another unifying concept of this text is that of learning. Machine learning
is all about getting representations of data that are sufficiently narrow that we
can extract similarities, but are sufficiently broad as to be able to differentiate
dissimilarities. For example, in unsupervised learning, we may try to split a
data set into classes. The big issue is, of course, how many? In supervised
learning, we’ll try to incorporate some expert knowledge into the building of
an association. This association should be accurate, but at the same time, be
broad enough to handle new inputs. We'll start getting into these issues shortly,
and will often return to these questions.

Chapter 2

Data

In general, we might think of “data” as the end result of some physical process.
That is, measurements of some process have been taken, and these numerical
results have been recorded. The data can therefore depend on some temporal
process (a time series), like the stock values of a certain company during the
day, the oil pressure in a running engine, the atmospheric temperature at a given
spot on the surface of the earth, the population of rabbits on an island, etc. The
data may not depend on time; for example, the pixel values on a photograph,
the analysis of a document (perhaps by using a word count), the answers to a
questionnaire, the results of a blood test, etc.

In looking at a data set for the first time, you should be asking yourself:
What knowledge am I trying to extract from this data? It is in this sense that
we think of data as carrying information, and it is our task to figure out what
that information is!. Our task is made harder by the fact that, in general, the
data will generally be represented in a form that hides the information (if not,
our task is greatly simplified!).

Here are some examples of data. As you read the description, think about
what information you might like to extract.

1.

2.1 Representations of Data, Part I

In linear algebra, we learned techniques that allowed us to translate vectors from
one basis to another. For example, suppose we have a set of data, {x(l) ,x(2) x(3) },
where x(9 € R'. The standard way of representing this data is to use the stan-

dard basis, e, ..., e1p:
10
x() = E Trer
k=1

1You may think we’re heading into an area known as information theory, but we’ll only
be looking at it superficially.

11

A key idea here is that a data
set spans itself.

12 CHAPTER 2. DATA

where zi is the k" component of vector i. But this seems like overkill- do
you really need 10 basis vectors to describe three data points? Here’s a better
representation:

M =1.xM 40.x2 40.x®

X(2) — 0 . X(l) +]_ . x(2) + 0 . x(3)

x® =0.xV +0.x® +1.x®
In this setting, x(*) is represented as (1,0,0), x(?) is (0, 1,0), and x® is (0,0,1).
We are reducing the dimension of the set from R'® to R>. If we were to

further assume that x3 is actually 2x(") — 3x(®)| then the dimension can be
reduced even further:

X(l) - (170)7 X(Z) - (07 1)7 X(3) - (27 _3)

In general, if we have a basis, B = {vy,..., vy} for some k—dimensional
vector space, then any point in that space can be written as:

k
x = Zaivi = Blz]p
i=1

where B = [vy ,...,vg]. If we have two sets of bases, B,C, then we can define
the change of coordinates via the relations:

x = Blz]y x = C[z]. = Blz], = C[z].

so that we can determine either [z]p, [z]. given the other set of coordinates.

So, there are an infinite number of choices for the basis. The question of
which to choose will be left to consider later on.

A related notion is that a matrix of numbers has a dual nature in that if
we are just presented with an m x n matrix, we do not know if it represents m
data points in R™ or n data points in IR™. We will consider this duality when
we introduce the Singular Value Decomposition (SVD).

2.2 Representations of Data, Part II

For data that is a time series (that is, the data is given to us as a string of
real numbers), it is a common practice to embed the time series to RF in the
following way:

Given 1,22, 3,%Z4,- .., a sequence of numbers, the following repre-
sents the data embedded in IR? via lag 2:

slE L]

2.3. REPRESENTING FUNCTIONS INSTEAD OF DATA 13

or we could embed the sequence in R? via lag 3:

X1 D) I3
o |, | X3 |[,]| T4 |,...
I3 T4 Is

and so on. We’ll discuss this technique in depth later on.

Why do such a thing? To plot a sequence of real numbers, we normally plot the
index 4 along the horizontal axis, with the value of z; along the vertical. There-
fore, we think of time as progressing along the horizontal axis. The problem is
that using this plot makes time leave the graph.

On the other hand, by plotting a sequence of data using a lag 2 vector, the
plot is of the ordered pairs (z;,z;+1). Now time is shown graphically by the
path through the data (which will hopefully be confined to some bounded region
of space).

2.3 Representing Functions instead of Data

As we have seen, a given set of data can be viewed in terms of its time series:

f(tO)af(tl)af(tz)a .- 5f(tN)

but it is interesting to consider other types of representations. The underlying
function might be represented by a sum of sines and cosines:

ft) =ao + f: ay, sin(kt) + by, cos(kt)
k=1

in which case, f could be represented by its frequency content (versus its tempo-
ral content). That is, I could define f by telling you what frequencies f consists
of (that is, I could give you numbers for a;,b;) , rather than telling you what f
is at various times. We will consider this more in depth in the section on Fourier
analysis.

In fact, this is a special case of a more abstract setting. Given that f is some
linear combination of functions ¢ (t),

F&) =D brgr(t)
k=1

f could be defined by stating the weights of the linear combination, by. An
example we’re familiar with is the Taylor series for f based at ¢t = a. In this
case, ¢,(t) = (t — a)¥, and:

14 CHAPTER 2. DATA

where we know that by = X) (a), where f*) is the k' derivative of f, and
fO=7.

From linear algebra, we know that Cla,b] is an infinite dimensional vector
space, and so requires an infinite number of basis vectors. In our previous
examples, the functions ¢, are simply the basis vectors, and the b are the
weights in that basis. Once we discretize a function to only n data points,
the set of functions over those points becomes an n— dimensional space- that is,
there are only n— parameters that are required to define any function over those
n— points. In fact, this space is isomorphic to IR" with the standard basis.

The representations given so far are called Linear Models. They are called
that because the model parameters are simply the weights of a linear combina-
tion (but notice that the basis functions themselves are not linear!). We will
describe some nonlinear models later on.

2.4 Summary

In this chapter, we have discussed the nature of representing data, and the basic
types of representation available to us. In ambiguous data, the choice of a basis
may carry unintended consequences, as we will discuss in the exercises.

In the first case, we treated data as existing in some linear subspace, and
tried to comstruct a basis for it. In the second two cases, we treat the data
as time oriented, and discussed higher dimensional representations via the lag
vector, or a functional representation of the data via sums of sines and cosines
(although there are many ways of representing a function).

There were two main points of this section: (1) I would like for you to start
thinking about what data represents, (2) Is it possible for some essential form of
a data set to exist? What would that look like? This is more of a philosophical
question, but it is critical in understanding what you want the outcome of data
analysis to tell you.

2.5 Exercise Set

1. (Matlab Exercise) Write a Matlab function that will input a time series
and output a lagged matrix. The input parameters should include the lag
length and a value representing a skip. Some samples of what your code
should do follow, where z is a vector of integers from 1 to 10.

e Function call: A=lagmatrix(x,4,2)
e QOutput:

[PUIN O
co g O Ut
[y

o © 00~

3
4
)
6
3

e Function call: A=lagmatrix(x,2,3)

2.5. EXERCISE SET 15

e QOutput:

1 47
A= { 2 5 8]
2. Suppose you are told that 1,3,5,7,... belongs to class A, and 2,4,6,8, ...
belongs to class B. What information is being carried- What is the un-
derlying process that is producing this data? What does 1.5 produce?

3. Let B,C be two matrices that give two different sets of basis vectors for

2,
-1 0 1 3
o[a) s[4

If [z]p = [1,2]7, then determine x and [z]c.

4. What might be considered the opposite of an essential representation has
been called a sparse representation. That is, the data that we are pre-
sented with is the output of some projection, and we wish to find a higher
dimensional representation. Some examples:

e “Shape from Shading” is where we find a three dimensional model
of a shape from a two dimensional representation. For example, find
the shape of the clown’s face from his photo.

e “The Cocktail Party Problem”. It is a well known phenomenon that,
if we are in a large room full of people speaking, we can isolate the
sound of the person speaking to us. A particular instance of this
problem: Given a tape recording of an orchestra, for example, is it
possible to isolate each instrument’s sound?

In terms of what we know from linear algebra, why is this such a harder
problem that finding an essential representation of data?

5. Recall that Gram-Schmidt orthogonalization inputs a set of vectors,

{X17X27' "7Xk}
, and outputs an orthogonal basis for it, {vi,Vva,...,Vv,} in the following
way:
o Let Vi =X3
X2+Vq
® Vo = Ty — v1
Vi -Vi
X3 - V2 X3-V1
® Vg = I3 — Vo — U1
Va - V2 vVi-Vvi

e And so on
Use Gram-Schmidt to orthogonalize the following set:
3,—4,5T, [-3,14,-7]T

First do the orthogonalization with the first vector as vi. Does your
answer change if you use the second vector as v;?

16

CHAPTER 2. DATA

6. What is the smallest number of basis vectors needed to represent the data:

2 -1 6

-1 -1 1 -3

= g |Xe= | g Xe= |] hX= | g
0 3 0 9

Write down what the low-dimensional representations are for x1,x2, X3, X4.

7. This series of exercises is designed to get you to consider what happens
when we put a time series into R? or R®.

Let y = sin(x), where z is taken as a sampling of the time interval from
—7 to w. Type in the following script:

x=linspace(-pi,pi,3000); %Get 3000 samples evenly spaced
y=sin(x); for j=2:20

plot(y(1:j-1),y(j:end))

pause

end
(a)
(b)

Before beginning, show (graphically) that: — cos(t) = sin (¢ + 5) and
that — sin(t) = sin(t + 7).

Note that the effect of this code is to plot the series y at time ¢
against the series y at time ¢+ 7. Can you predict what will happen?
(HINT: Consider what will happen if 7 =0, 7 = § and 7 = 7 using
the previous part).

Run the code and write up your observations: What happens to the
curve as j changes?
Try changing y to cos(z). Any changes?

Try changing z: x=linspace(0,100%pi,10000), and change y to
y=sin(x)+sin((1/sqrt(2))*x), and re-run the code. What hap-
pens now?

8. The dimension of a set varies with the definition used. We explore a couple
of these below:

e We will define the Euclidean Dimension (D.) of a set S to be the

(smallest) number of basis vectors needed to describe the given set.
This is a global quantity, and is the definition we used in linear alge-
bra.

The Topological Dimension (D7) of a set S is something that is local
in nature- that is, the topological dimension is something that is
determined point by point. To understand this definition, recall that
an “e— neighborhood” (in our usual space R™) about a point z is the
set of points y so that ||z — y|| <e.

2.5. EXERCISE SET 17

— A set has topological dimension 0 if every point has arbitrarily
small neighborhoods whose boundaries do not intersect the set.

— A set S has topological dimension k if each point in S has ar-
bitrarily small neighborhoods whose boundaries meet S in a set
of topological dimension k£ — 1, and k is the least nonnegative
integer for which this holds.

) Suppose S is a circle in the plane. What is D,, D77
) Do the same for the sphere (||z|| = 1) in three dimensions.
¢) Suppose S is the letter “X” in the plane. What is D., Dr?
) Give some examples of sets S where D, = Dr.

)

Consider the set S in the plane that consists of a filled in square with
a line segment attached to one side. Discuss any problems you might
have with computing Dr. In determining Dr, be sure to read its
definition carefully.

18

CHAPTER 2. DATA

Part V

Appendices

211

Appendix A

An Introduction to Matlab

A.1 What is Matlab?

Matlab is a computer program designed to do mathematics. You might think of
it as a super-calculator. That is, once Matlab has been started, you can enter
computations, and Matlab will produce the results. Matlab has many built-in
programs and has some great graphics features that we’ll discuss later.

Starting the Matlab Program

The Matlab program physically resides on the computer named ”Hope” in the
math lab. To run Matlab, you do not have to be physically sitting at Hope; you
can be at any of the computer terminals.
Once you have logged into your particular machine, you’ll need to log into
Hope to make Matlab work. To do this, in your command window type:
ssh hope and you’ll be on that machine. Now just type matlab and you’ll
see the program start. The splashscreen will come up, and you’ll get a com-
mand window that looks like:

<MATLAB>
Copyright 1984-2001 The MathWorks, Inc.
Version 6.1.0.450 Release 12.1
May 18 2001

To get started, select "MATLAB Help" from the Help menu.
>>

To exit from Matlab, either type exit from the command window, or choose
Exit from the window menu (under File).

How does Matlab work?

You can make Matlab do computations three different ways:

213

214 APPENDIX A. AN INTRODUCTION TO MATLAB

e Type commands directly into the keyboard.

e Have your Matlab commands typed into a separate text file (called a
script file), and then have Matlab read these commands in. This is very
nice- it gives you documentation and allows you to run similar computa-
tions several times without having to re-type the commands.

e Define your own functions by typing a separate text file (called an m-file).

Saving your work

If you haven’t written a script file, but are doing your computations ”live”, you
may want to begin the session by typing: diary filename

All subsequent keyboard input and output will then not only be on the com-
puter monitor, but will also be saved as ”filename”. For example, if you’re using
Matlab for homework problem 3.1, you may use the command: diary hw3_1
to save your work.

Important: The ”diary” command must be used prior to typing in the
commands you want to save.

Matlab has a very nice text editor that you can use to type out and save
Matlab functions and scripts- To access the editor, type edit in the Matlab
command window.

A.2 Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /,
are addition, subtraction, multiplication, division and exponentiation. Type
them in just as you would write them. For example, 2° would be typed
as 275.

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent as
sin , cos , tan . So, for example, the sine of 3.1 would be typed as:
sin(3.1)

The number 7 is used so frequently that Matlab has its (approximate)
value built-in as the constant pi. For example, sin(7) is typed as sin(pi).
Note that 7 uses a lowercase “P”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in as a constant (like 7). To
take the number e to a power, use the functional form: e®* = exp(x) So if
I want the number e, I would type exp(1), and so on.

For the natural log (log base €), use the notation log. For example, In(3)
is written as 1log(3). We will only use the natural log- if in the future you
want a different base, look up the log command by typing help log.

A.2. INTRODUCTORY COMMANDS 215

4. Complex Numbers and Arithmetic

Matlab has complex arithmetic built-in. Either the letter 7 or j can be
used to represent v/—1, but a word of caution is in order here: You can
only use i or j for /=1 ONLY if you have not previously defined them.
If you think you’re going to use complex numbers, do not use the letter 4
for anything but complex arithmetic! Example: (0.2+3%1)* (5+2*1) will
multiply the two complex numbers together (using complex arithmetic).

A.2.1 Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:
who List all variables currently in use.
whos List all variables, and their sizes.
1s or dir List the contents of the current directory.

cd Change the directory. For example, cd examples would change the
current directory to your file named examples. To go up the structure
instead of down, type cd ..

pwd Tell me where in the directory structure I’'m currently at.
where command Tell me where command.m is located.

help command List the help file for the function command. For example,
to get help on the sine function, type help sin.

demo Lists all the demonstration programs that Matlab came with- This is
fun to look at. We don’t have all of them; you can go to Matlab’s website
to look at more: www.mathworks.com.

A.2.2 A Programming Note: Assignment v. Equality

In computer programming, the equal sign does not mean mathematical equality.
We use the equal sign as an assignment operator. For example,

A=3;

means to assign the value of 3 to the variable A- If A has not been assigned to
anything before, this command will also create that variable.

The format of assignment is always the same: A = B means that we will
assign the value of B to the variable A.

Using this, what will the following commands do?

x=5;
x=x+3;

216 APPENDIX A. AN INTRODUCTION TO MATLAB

Answer: First, the value 5 is assigned to the variable z. Next, z+ 3 is computed
as 8, and finally, the value of 8 is assigned to the variable z.
Not an example: 5=x;, you would get an error- the number 5 is not a variable.
The only exception to this rule is when you pass the computer an equation.
You will know this because you are putting the equation in single quotes. For
example,

x=solve(’3*x+5*exp(x)=0’)

passes the equation 3z + 5e* = 0 into the function solve.

A.3 Exercise Set

1. The following script file is an example of Newton’s method applied to a
function f(z) = xe” — cos(z). Recall that Newton’s Method solves for z:
f(x) = 0 by taking an initial guess, x¢, and refines the guess by:

f(z;)
f'(z:)

Tit1 = Ts —

x=0.2; JInitial guess for solution to f(x)=0
for k=1:5

y=x*exp(x)-cos(x);

dy=(x+1) *exp(x)+sin(x);

x=x-(y/dy)
end

Notes about the code:

e We see our first for loop. We’ll discuss what this does in class.
e Note the use of % to make comments.

e Note that x=x-(y/dy) does NOT have a semicolon at the end.

(a) Use the edit feature to type it in and save it as newtonl.m

(b) Run the code after you’ve saved it by typing newtonl in the command
window.

(c) Write down Matlab’s output.
(d) To see more significant digits, type format long
(e) Type whos and write down Matlab’s answer. If you’re continuing to

the next exercise, type clear to clear Matlab’s memory.

2. Use Matlab’s equation solver to do the last exercise by typing:

x=solve(’x*exp(x)-cos(x)=0’)

A.4. MATRICES 217

Are your answers the same?

3. Find the 6 roots of unity in Matlab by typing
x=solve(’x"6=1")
Write down your answers, and then type whos. What is Matlab telling
you about what x is? Can you guess?
A.4 Matrices

Matlab was originally designed as a “front end” to access LINPACK and EIS-
PACK, which are numerical linear algebra packages written in FORTRAN. From
this beginning, Matlab’s basic data type is the matrix.

I enter the following matrix:

1 2 3 4
5 6 7 8

A=

as:

A=[1 2 3 4; 5 6 7 8];

or as:
A=[1 2 3 4
567 8];

Note the use of the semicolon: Inside a matrix, the semicolon indicates the end
of a row. Outside the matrix, the semicolon suppresses Matlab output. You can
also separate numbers using a comma if you’d prefer that. Rows and columns
are entered in a corresponding way, as either a 1 X n matrix or as a n x 1 matrix.

We access elements of the matrix in a natural way. For example, the (2, 3)
element of A is written as A(2,3) in Matlab (in this case, A(2,3) is 7). You can
change the elements using the assignment operator =. For example, if we want
to change the (1,3) element of A from 3 to 6, type:

A(1,3)=6;

Special Commands: The colon operator
e a:b

Produces a listing from a to b in a row:
a:b gives [a,a+1,a+2,...,a+n]

where n is the largest integer so that a + n < b. For example, x =2 :9
puts z as a row vector whose elements are the integers from 2 to 9.

218

APPENDIX A. AN INTRODUCTION TO MATLAB
a:b:c
Produces the numbers from a to ¢ by adding b each time:
a:b:c gives [a,a+b,a+2b,...,a+ nd]

where n is the largest integer so that a + nb < ¢. For example, 1:2:7
returns the numbers 1,3,5,7. Type the following into Matlab to see what
you get: 1:2:8 and 1:0.5:6

A.4.1 Matlab commands associated with Arrays

linspace(a,b,c)

Produces ¢ numbers evenly spaced from the number a to the number b
(inclusive). For example, x=1inspace(2,3.5,40) produces 40 numbers
evenly spaced beginning with 2 and ending with 3.5.

SHORTCUT: Leaving off the third number ¢ will give you 100 numbers
between a and b (That is, ¢ = 100 is the default value.)

Compare this with the colon operator. We would use the colon operator
if we want to define the length between numbers, and use linspace if we
want to define the endpoints.

Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m x n array of random numbers (uniformly
distributed) between 0 and 1. If you just want a single random number
between 0 and 1, just type rand

A=randn (m,n) produces an m xn array of random numbers (with a normal
distribution) with zero mean and unit variance. If you want a single
random number (with a normal distribution), just type randn

A=zeros(m,n) Produces an m X n array of zeros.

A=ones (m,n) Produces an m x n array of ones.

A=eye (n) Produces an n x n identity matrix.

A=repmat (B,m,n) Matrix A is constructed from matrix (or vector) B by

replicating B m times down and n times across.

2
Example: Let B = . Then A=repmat (B,2,3) creates the array:
3 4

W W
BN N
W= W
BN N
W W
BN N

A4

MATRICES 219

Matrix Arithmetic

Transposition is denoted by the single quote character >. Thatis, A’ = AT.
(CAUTION: If A contains complex numbers, then A’ is the conjugate
transpose of A, sometimes denoted as A* = AT)

Matrix addition and subtraction is performed automatically and is only
defined for matrices of the same size.

Scalar addition. If we want to add a constant ¢ to every item in an array
A, type: A+c

Scalar Multiplication: We can multiply every number in the array by a
constant: If A is the array and c is the constant, we would write: B=c*A

Matrix Multiplication: Use the regular multiplication sign for standard
matrix multiplication. If 4 is m xn and B is n X p, then A*B is an m X p
matrix, as we did in linear algebra.

Elementwise Multiplication. We can multiply and divide the elements of
an array A and an array B elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an
array A, we would write: A."2 This is the same as saying A.*A

Functions applied to arrays: Matlab will automatically apply a given func-
tion to each element of the array. For example, sin(A4) will apply the sine
function to each element of the array A, and exp (4) will apply e® to each
element of the array. If you write your own functions, you should always
decide ahead of time how you want the function to operate on a matrix.

Accessing Submatrices

Let A be an m x n array of numbers. Then:

The notation: Yields:
A(i,) The (4, j)th element
A(i,:) The entire ith row
AC:,3) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4 x 2 submatrix

220 APPENDIX A. AN INTRODUCTION TO MATLAB

Example: What kind of an array would the following command produce?

A([1,3,6]1,[2,5])

A 3 x 2 matrix consisting of the elements:

Example: Create a 5 x 5 zero array, and change it to:

o o o o o
o N R = O
© o w»t N O
o O o w o
o o o o o

Answer:

A=zeros(5,5); %Create the matrix of zeros
b=[123;456; 7 8 9];
A(2:4,2:4)=b;

Note also the use of the 7% sign. It is used to denote comments; that is, Matlab
would ignore everything on the same line after the % sign.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix.
Before doing it, we define [] as ”"the empty array”: the array with nothing in
it.

In the following, let A be a 4 x 5 array, let bbe a 1 x 5 row, and cbe a4 x 1
column.

Examples of use (each of these are independent from the previous):

A.4. MATRICES 221

The command: Produces:

A(L,:)=[]; Delete the first row.

A([1,31,:)=[1; Delete rows 1 and 3.

A(:,3)=[]; Delete column 3.

A(:,1:2:5)=[]; Delete the odd columns.

A(1,:)=b; Put b as row 1.

A(:,68)=c; Add c as the last column.

d=[c , A(:,1:3)]; d is ¢ and columns 1 — 3 of A.

A=[A(:,1), c, A(:,2:5)]; | Insert ¢ as column 2 of A, others shift 1 over.
A=TA(1,:); b; A(2:4,:)]; | Insert b as row 2 of A, others shifted 1 down.

A.4.2 Solving Ax =b for x

To solve Ax = b for x, Matlab has two basic commands: x=A\b or x=pinv (A) xb.
The command pinv(A) computes the pseudoinverse of A, which we will discuss
later in the section dealing with the Singular Value Decomposition.

In linear algebra, there were three possible outcomes for solving Ax = b for
x. They were:

1. A unique solution.
2. An infinite number of solutions.
3. No solution.

Matlab will always give exactly one solution. We need to interpret that
solution in the second two cases. In the case of an infinite number of solutions
(we have free variables in this case, also called an underdetermined system), the
two methods may give different answers:

e x=A\b provides the most zeros in x.

e x=pinv(A)*b gives x with the smallest norm.

1 0 -2 9
Example: Let A = , with b = . Then the full solution
01 1 3
is:
9+ 2¢
X = 33—t (A1)

222 APPENDIX A. AN INTRODUCTION TO MATLAB

|” and the result of

In Matlab, the result of typing x=A\bis z = [0,—-15/2,—9/2
typing x=pinv(A)*bis x = [4,11/2,-5/2].

(MATLAB HINT: You can get Matlab to return numbers as fractions by
typing format rat)

In the case of an overdetermined system (a system with no solution), Matlab
will automatically return the least squares solution- that is, the answer x* will

be the minimum of ||Ax — b||:
[|[Ax* —b|| < [|Ax — b]|, for all x

In general, you should always use the forward slash (for help, type help slash):
x=A\b which automatically determines a best numerical method. That is, some-
times its best (numerically) not to explicitly compute the pseudoinverse first.

A.5 Exercise Set

1. What is the Matlab command to create the array which holds the inte-
gers: 2,5,8,11,...89

2. (Referring to the array above) What would the Matlab command be that
zeros out the even-numbered indices (That is, 2(2), z(4), z(6),...)?

3. What is the difference in Matlab between typing: x=[1 2 3] and x=[1,2,3]
and x=[1;2;3]1? What happens if you type a semicolon at the end of the
commands (i.e., x=[1 2 3];)?

4. (Referring to the last question) For each of those, what happens if you
type x."2+37 What happens if you forget the period (e.g., x"2+3)

5. What do the following commands do: x=2;3;6;,x=2:3:6;,a=pi:pi:8%*pi;

6. Describe the output for each of the following Matlab commands. Recall
that typing a semicolon at the end of the line suppresses Matlab output-
to see the results, leave off the semicolon.

A=rand(3,4);
A([1,2],3)=zeros(2,1);
B=sin(A);

C=B+6;

D=2xB’ ;

E=A./2;

F=sum(A.x*A) ;

7. What will Matlab do if you type in:
A=rand(3,4);

AC:)
ACT)

A5

10.

11.

EXERCISE SET 223

NOTE: This is very bad programming style! Don’t do it unless you know
what you’re doing!!

. What is the Matlab command to perform the following:

(a) Given an array z, add 3 to each of its values.

(b) Given an array A, remove its first column and assign the result to a
new array B.

. What will the following code fragment do?

a=1:10;

for k=1:10
h=ceil(length(a)*rand) ;
b(k)=a(h);
a(h)=[1;

end

Compare this with a=ceil (10*rand(10,1)) and a=randperm(10)

Use the Quick Summary sheet to help you write a code fragment that takes
a random matrix X and re-sorts the columns so that the first column has
the smallest size and the last column has the greatest size.

The plate in in the figure below represents a cross section of a metal beam?.
Let Ty, T>,...,Ts denote the temperature at the six interior nodes. The
temperature at a node is approximately equal to the average of the four
nearest nodes- to the left, above, to the right, and below. For instance,

T1:(10+20+T2+T4)/401‘4T1—T2—T4:30

Write a system of equations whose solution gives estimates for the tem-
peratures 77, ...,Tg and solve it in Matlab.

20" 20" 20"

10" 40"

10" 40"

20" 20" 20"

1See David Lay, Linear Algebra and its Applications, page 12

224 APPENDIX A. AN INTRODUCTION TO MATLAB

12. Find the interpolating polynomial P(t) = a + bt + ct? for the data
(1,12),(2,15), (3, 16)
That is, use Matlab to find a, b, ¢ so that:
a+b-l1+c-1> =12

a+b-2+¢-22 =15
a+b-3+c¢-32 =16

13. Use calculus to determine ¢ that minimizes ||z|| in Equation A.1. HINT:
It suffices to find the minimum of ||z||2, so we don’t have to differentiate
the square root. Also give an argument about why this is true.

A.6 How do I get a Plot?

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);
y=sin(x);
plot(x,y);

You’ll see that we had to create a domain array and a range array for the
function. We then plot the arrays. For example,

plot([1,2],[3,4D);

will plot a line segment between the points (1, 3) and (2,4). So, Matlab’s plotting
feature is drawing small line segments between data points in the plane.

A.6.1 Examples

1. Matlab can also plot multiple functions on one graph. For example:

x1=linspace(-2,2);
yl=sin(x1);

y2=x1.72;
x2=linspace(-2,1);
y3=exp(x2);
plot(x1l,y1,x1,y2,x2,y3);

produces a single plot with all three functions.

2. plot(x1l,y1,’*-);

Plots the function y1, and also plots the symbol * where the data points
are.

A.6. HOW DO I GET A PLOT? 225

3. plot(xl,yl,’k*-’,x2,y3,’r"=");

Plots the function y1 using a black (k) line with the asterisk at each data
point, PLUS plots the function y2 using a red line with red triangles at
each data point.

The following lists all of the built in colors and symbols that Matlab can
use in plotting: (NOTE: You can see this list anytime in Matlab by typing;:

help plot)
Code Color Symbol

y yellow . point
m magenta o} circle
c cyan X x-mark
r red + plus
g green — solid
b blue * star
w white : dotted
k black - dashdot

—_— dashed

4. The following sequence of commands also puts on a legend, a title, and
relabels the x— and y—axes: Try it!

x=linspace(-2,2);

yl=sin(x);

y2=x."2;

plot(x,yl,’g*-’,x,y2,’k-.7);
title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);
xlabel(’Dollars’);

ylabel(’Sense’);

5. Other Things: If you look at the plotting window from the last example,
you’ll see lots of things that you can do. For example, there’s a zoom in
and a zoom out feature. You can also edit the colors and symbols of your
plot, and the title, legend and axis labels. Try them out!

A.6.2 Plotting in Three Dimensions

Matlab uses the plot3 command to plot in three dimensions. We won’t be using
this feature here. To get more information, either type help plot3 or refer to
the Matlab Graphics Manual.

226 APPENDIX A. AN INTRODUCTION TO MATLAB

A.7 M-Files: Functions and Scripts

What is a Matlab Function? A Matlab function is a sequence of commands that
uses some input variables and outputs some variables. The following is a very
simple Matlab function:

function y=square(x)

%FUNCTION Y=SQUARE(X)

%This function inputs a number or an array, and
% outputs the squares of the numbers.

y=x."2;
You would type this in the editor, then save it as square.m (the filename must
be the same name as the function, and it must use the .m extension).

You’ll notice that the first line states “function”. This is always the first line
of a Matlab function. The remarks that follow the first line are very important.
When you type help square, these three lines appear. So when you write your
own functions, you should include comments so that you can remember how to
use it.

The rest of the first line defines what the input variable is (x), and what the
output variable is (y).

A Matlab function can produce multiple outputs. For example:

function [A,b]=randmatrix(n)

%FUNCTION [A,b]=RANDMATRIX(N)

%Produces an 2n x 2n random matrix A and a random
%column vector b.

nn=2xn;

A=rand(nn,nn);

b=rand(nn,1);

To call this function from Matlab, you would write, for example,

[X,y]l=randmatrix(10);

You’ll notice that after running this program, the variables internal to the
function (in this case nn) disappear. This is one major difference between a
script and a function:

e A script file is a text file with a sequence of Matlab commands. Tt is used
by Matlab just as if you were typing the commands in from the keyboard.
You should use a script file whenever you are experimenting in Matlab- it
makes life a lot easier!

e A function in Matlab is like a subroutine in programming. That is, once
the function has been called, all of its variables are local to that function-
you cannot access them from the keyboard, and the variables are erased
once the function is finished.

Both scripts and functions should have the .m file extension. We’ll get more
practice with these a little later.

A.7. M-FILES: FUNCTIONS AND SCRIPTS 227

A.7.1 Debugging Hints

Sometimes when we write a Matlab function, we’ll want to stop its execution to
see what the function is actually doing. There are a couple of ways to do this-
one way is to use the debugger in Matlab’s editor. The method below is also
very useful.

The keyboard command temporarily halts the execution of a function and
returns control to the keyboard, and you can use this to see what’s happening
in a function. To return the control back to Matlab, you would type return.

For example, let’s turn the Newton’s method script file into a function. Edit
the file we created earlier as newtonl.m so that it looks like this:

function [z,y,dyl=newton2(x,n)

%FUNCTION [y,dy]l=newton2(x,n)

% performs Newton’s Method on x*exp(x)-cos(x)

% using initial value x and n iterationms.

% The output z gives the refined solution,

% the output y gives the function values and dy
% the corresponding derivatives.

for k=1:n
y(k) = x*exp(x)-cos(x);
dy (k) = (x+1)*exp(x)+sin(x);
z(k) = x-(y(&)/dy(k));

x = z(k);
end
keyboard

Now save the file as newton2.m. In the command window, type help
newton2. You should see the help lines come up. Now run the function by
typing in the command window: [x,y,z]=newton2(0.2,5);

The program should stop at the keyboard line. Type in whos to see the
current active variables. NOTICE that the cursor in the command window has
changed to K>>. This indicates that the keyboard command is active. Type in
return to get back.

Something to think about: What will Matlab do if you call

[x,y,z]=newton2(0.2,5);
and then type in [x,y,z]=newton2(0.2,5); at the K>> prompt??

Other Hints:

e Always know what the matrix sizes are. If you think the input to a
function is a column, you can ensure that it is either by checking the size
with size(x) or by typing: x=x(:);

e You can also type the command: dbstop if error

This will stop Matlab execution and point you to the line in your code
where the error occurred. To turn this off, type dbclear if error

228 APPENDIX A. AN INTRODUCTION TO MATLAB

To see more options, type help dbstop

A.8 Exercise Set

1. Let = be a row. What happens if you type plot(x)?

2. Let A be a 4 x 3 matrix. What happens if you type plot(A)? Compare
this with plot(A’).

3. Write a Matlab command to plot ¥y = €%, where —2 < z < 2 using 30
points. Plot both the curve and the actual data points themselves, both
in magenta.

4. Write a Matlab function to plot y = sin(z) in red, y = sin(2z) in black,
and y = sin(3z) in green, all on the same plot. You can assume that
z € [—4,8].

5. Find the interpolating polynomial P(t) = a + bt + ct? for the data
(1,12),(2,15), (3, 16)
That is, use Matlab to find a, b, ¢ so that:
a+b-l1+c-17 =12

a+b-24+¢-22 =15
a+b-3+c¢-32 =16

Plot the data points as red stars and the polynomial as a solid magenta
curve. When plotting the polynomial, use more than three domain points,
like ¢t = linspace(0.5,3.5).

6. A model equation for a child’s systolic blood pressure p and weight w is
given by:
a+bln(w)=p
where a, b are the model parameters that we need to find using a least

squares model. Use the following experimental data to estimate the sys-
tolic blood pressure of a child weighing 100 pounds:

w‘44 61 81 113 131
p‘91 98 103 110 112

Plot the data (use In(w) versus p) and the model equation. When plotting
the model equation, use different data, like ¢ = linspace(40, 140).

7. Use the model equation

y = Acos(z) + Bsin(z)

A.8. EXERCISE SET 229

to fit the data: (1,7.9),(2,5.4),(3,—0.9). That is, use Matlab to find the
best A and B. Plot both the data points (as red stars) and the model (as
a black curve). Hint: When plotting the model, use more domain points,
like z = linspace(0,4).

230 APPENDIX A. AN INTRODUCTION TO MATLAB

